Intellectual Property Reform for Genetically Modified Crops: A Legal Imperative

Carlos Scott Lopez

Follow this and additional works at: http://scholarship.law.edu/jchlp

Recommended Citation
Available at: http://scholarship.law.edu/jchlp/vol20/iss2/6
INTELLECTUAL PROPERTY REFORM FOR GENETICALLY MODIFIED CROPS: A LEGAL IMPERATIVE

Carlos Scott López

CONTENTS

I. INTRODUCTION AND RECENT CURRENT EVENTS 369
II. THE GENETICALLY MODIFIED CROP (GMC) DEBATE 370
 A. Context and Background 370
 B. Positive and Negative Implications of GMCs 374
 C. Recent Scientific and Political Developments 382
 D. Case Study: Australia 388
III. THE ROLE OF INTELLECTUAL PROPERTY (IP) 393
 A. Power Dynamics, Floating Seeds, and Localizing Fault ... 393
 B. Patentability Issues 397
 C. Lessons from Monsanto Canada 408
 D. International Concerns 411
 E. Hopeful Resolutions: Five Guiding Principles 413
IV. CONCLUSION .. 418
APPENDIX OF EXHIBITS .. 419

* Co-director, Jerome N. Frank Legal Services Organization at The Yale Law School (New Haven, CT) and formerly (a) a manager with McKinsey & Company, Inc., and (b) an officer of the United Nations Transitional Authority in Cambodia (UNTAC). The Jerome N. Frank Legal Services Organization, The Yale Law School, P.O. Box 209090, 133 Wall Street, New Haven, CT, 06520-9090, Tel. (203) 776-5152, Fax (203)432-1426, E-mail: carlos.lopez@yale.edu.

" The pronoun “his” is also used to refer to individuals who are male and unidentified individuals who may be male or female. If contextually appropriate, the phrase “his or her” is used.
Everything that can be invented has been invented.

Charles H. Duell, Director of the U.S. Patent Office 1899 (recommending that the Patent Office be abolished)

The patent landscape is a minefield.

- Tom Abage, San Francisco Chronicle
 January 12, 2000¹

[T]he . . . patent system may . . . be described as dislocated and being "out of sync" with the vibrant and explosive advances in science and technology.

- Kojo Yelpaala, Professor of Law University of the Pacific, 2000²

Designed more than a hundred years ago to meet the . . . needs of a [simpler] economy . . . our system of intellectual property rights are an undifferentiated one-size-fits-all system.

- Lester C. Thurow, Dean Emeritus MIT Sloan School of Management, 1999³

I. INTRODUCTION AND RECENT CURRENT EVENTS

During the last decade, Genetically Modified Crops (GMCs) and the scientific techniques that inspire them have become commonplace. So, too, have the controversies. While GMCs are being grown, sold, and consumed at unprecedented levels — and genetic cloning techniques have become ubiquitous in scientific research — critics contend that the economic, social, political, and ecological risks of GMCs are too great; therefore, GMCs should be more vigorously controlled. On the other hand, the inertia behind the development and potential benefits of GMCs are enormous. In fact, the main problem with GMCs is not the risks they impose, but the ways by which they are inconsistently and inadequately managed. More specifically, the intellectual property (IP) rights associated with GMCs are often muddled, inconsistent, or unclear, leading the interests of key inter-regional, inter-state, and international constituencies to be either ignored, misunderstood, or unprotected. Ultimately, IP rights enable the producers of GMCs to wield an inordinate amount of economic and political power in dictating the use of GMCs; however, their actions have gone largely unchecked because of the nature of the IP rights granted. If the IP rights of GMCs are not managed more effectively — addressing the unique scientific origins of GMCs and the roles of their creators — critics’ worst fears could come to fruition.

This article highlights the need for a new legal framework for managing GMC IP interests and suggests five guiding principles for creating such a framework. In doing so, the article explores the specific case of Australia, which is currently overhauling its IP system, and analyzes the case of Monsanto Canada v. Schmeiser, decided by the Canadian Federal Court in 2002. Australia’s current challenges are an example of both an inadequate IP system and a failed attempt to reform and adequately address key problems posed by GMCs. Furthermore, the case of Monsanto Canada illustrates a decision which serves as a significantly damaging precedent for the IP law it both creates and inspires. Ultimately, an effective IP regime must be international in scope. Indeed, individual countries not only must take initiatives to meet their own needs, but also must address the inadequacies of the world’s current administrative and legal IP systems. Countries must recognize IP rights for GMCs and simultaneously account for the economic, social, ecological, political,
and international interests that GMCs raise. This task is not simple, but is an essential prerequisite for a sustainable, ethically viable system that accommodates GMCs and the scientific technology they inspire.

II. THE GENETICALLY MODIFIED CROP (GMC) DEBATE

A. Context & Background

In many ways, GMCs are nothing new. The romanticization of sowing seeds and growing plants has existed for literally thousands of years of recorded history. Furthermore, humans have "genetically modified plants and animals through domestication and controlled breeding for some ten thousand years with little controversy." In the early 1970s, scientists developed and refined new biotechnological techniques which enabled them to transfer genes from one species into other species. The seeds of controversy then were sown.

During the 1980s, developments proceeded rapidly. In 1986, the United States was home to the first patent "covering a genetically engineered variety of corn with increased nutritional value." This was followed in 1987 with the successful transplant of a "gene from a bacterial cell into tomato plants, making the plants resistant to caterpillars." In 1989, Australia was the first nation in the world to approve the sale of a genetically modified organism; Bio-Care Technology, a company specializing in microbial-based inoculants for use in agriculture and horticulture, introduced the world's first commercial pesticide, Nogall™, which is essentially a genetically

5. See Paul Healy, Buzz on bee-u-tiful plants, THE MERCURY (Hobart, Austl.), Nov. 23, 2002, at 44 (observing how farming over the ages has been associated with romantic ideals).

7. Safrin, supra note 6, at 606.

9. Id.

manipulated bacterium with a long shelf-life. Based on the species *Agrobacterium radiobacter* (strain K1026), Nogall™ effectively helped stem the tide “of crown gall disease in stone fruit (peaches, cherries, apricots, plums, and nectarines), nut trees (e.g., almonds, walnuts, and pecans), caneberries (boysenberries [and] raspberries), clematis, hops, kiwifruit, persimmon, [and] roses.”

Five years later, in 1994, Calgene employed anti-sense RNA technology to produce the first plant product, the Flavr Savr™ Tomato, to reach dining hall tables; it was

11. Additional products produced by Bio-Care Technology include the following:

(a) Twist Fungus Inoculum (containing *Dilospora alopecuri* for the biological control of annual ryegrass toxicity in pastures in Southern Australia), available at http://www.agrobiologicals.com/products/P1642.htm (last visited Apr. 18, 2004);

(b) Nitrogerm and Nobulaid (inoculents for creating nodulation and nitrogen fixation in pasture and grain legumes such as lucernes (e.g., alfalfa), clovers, lotus, lablab, vetches, guar, peas, soybeans, cowpeas, mung beans, lupins, chickpeas, faba beans, and lentils), available at http://www.agrobiologicals.com/products/P1643.htm (last visited Apr. 18, 2004);

(c) BioCane Granules (containing *Metarhizium anisopliae*, strain FI-1045, for the biological control of the beetle white grub, *Dermolepida albohirtum*, in sugarcane in North Queensland), available at http://www.agrobiologicals.com/products/P1641.htm (last visited Apr. 18, 2004); and

13. In prokaryotes, antisense RNA is known to down-regulate expression of specific genes. This type of regulatory control has not been observed in higher eukaryotes, but in frog oocytes and *Drosophila* embryos, antisense RNA can cause decreased expression of target genes. In the tomato, the enzyme polygalacturonase (PG), encoded by the PG gene, is expressed during ripening. PG activity causes depolymerization of the pectin fraction of the cell wall, which results in softening of ripe tomatoes. Theoretically, the introduction of an antisense PG gene was the expected result in an mRNA that would suppress the expression of the endogenous PG enzyme, which is what was ultimately achieved in the Flavr Savr™ tomato. See C. J. S. Smith et al., *Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes*, 334 NATURE 724 (1988), cited by University of Toronto, *The Genetics of the Flavr Savr* website, available at http://dragon.zoo.utoronto.ca/~jlm-gmf/TO101A[Enzyme.html (last visited Apr. 18, 2004).
also the first genetically modified food (GMF) sold in the United States. One year later, Monsanto's NewLeaf® potato was the first commercial crop with built-in insect repellant; it included a gene from the bacterium *Bacillus thuringiensis*, or BT, engineered to protect it primarily from the Colorado Beetle and other insect larvae in the *lepidopetera* class (e.g., butterflies and moths).

The late 1990s brought more technological developments and the first significant sets of scares and controversies. Given this article's later discussion of Australia as illustrative of a jurisdiction in need of a new IP regime, it is worth focusing on particular developments there. Just months after Australia’s approved release of patented Ingard™ cotton (containing a genetic defense to caterpillar attack and the first, and only, genetically modified crop grown in Australia), it was discovered that five of twenty major brands of cheddar cheeses had used genetic engineering to produce the cheeses, though this fact was not noted on their labels. Consumers reacted by boycotting the cheeses and, just four months later, the Australian government halted the sale of all GMFs after an Adelaide-based company, BresaGen, called for the destruction of cattle which had eaten feed with a modified growth gene producing leaner meat. On February 3, 1997, the Australian government instituted labeling requirements requiring any products with more than five percent of modified agreements to

17. The active constituent in this strain of cotton is a subspecies of *Bacillus thuringiensis*. The *kurstaki* delta endotoxin is produced by the CrylA(c) gene and its controlling sequences. See Gelernter & Trumble, supra note 16, passim. See generally http://www.monsanto.com.au/images/cotton/labels/ingard.pdf (last visited Apr. 18, 2004) (displaying the label affixed to bags of the insecticide).

18. Ambrose, supra note 8, at 8.
19. Id.
obtain approval — on a case-by-case basis — for public consumption.20 Less than two weeks later, on February 14, 1997, Australia prohibited BT-genetically modified Maize, followed by Luxembourg on March 17, 1997, and the EU required labeling of all products with genetically modified foodstuffs in early April.21 Only three weeks later, the United Kingdom’s Prince Charles called a complete halt to genetic manipulations of food, warning that scientists were straying into “realms that belong to God, and to God alone.”22 On June 7, 1998, Swiss voters overwhelmingly supported a referendum banning all genetic alterations and patenting of animals.23

Despite these controversies, genetic crops have continued to multiply and a wide range of varieties now exist. Most GMCs comprise four crops: soya, corn, cotton, and canola;24 and, as Professor Marsha A. Echols notes, they take one of three forms: (a) basic agricultural or bulk products (e.g., the long-life Flavr SavrTM Tomato, insect-resistant maize, and Roundup ReadyTM Soybeans); (b) processed products with genetically engineered ingredients (e.g., tomato puree from long-life tomatoes); and (c) genetically engineered foods (e.g., chymosin, a vegetarian milk coagulant for cheese).25 A wide variety of products currently being developed include “salt-tolerant and drought-tolerant crops; coloured cotton; plants that make plastic starters; and plants in which drugs and vaccines are produced.”26

Internationally, “the OECD has estimated that more than 1,100 field trials were conducted with transgenic plants between 1986 and 1992.”27 Furthermore, Monsanto currently owns ninety percent of the world’s

20 Id.

22 See sources cited supra note 21.

23 See sources cited supra note 21.

24 Adrienne Clarke, Australia Needs to Protect its GM Technology: Ownership the Key, WEEKLY TIMES, Oct. 9, 2002, at 15.

26 Adrienne Clarke, Enormous Environmental Benefits in GM Crops, CANBERRA TIMES, October 10, 2002, at A18.

GMCs, charges “technology fees” for its services, and is leading the way in research and development efforts. India, among others, has fought back with a very loose IP system as a means of encouraging innovation and allowing its citizens to make use of the technologies without needing to pay key royalties. The United States Trade Representative Office, however, used access to U.S. markets as a lever to induce other countries to follow its lead in protecting IP issues. In so doing, it has suggested that arguments over the efficacy of GMCs will most likely be addressed in the halls of legislatures enacting IP regulation, and not laboratories or public rallies.

B. Positive & Negative Implications of GMCs

The potential benefits of GMCs are arguably enormous and pundits often raise these in response to arguments considering GMCs a threat to the environment, public health, and the “naturalness” of scientific endeavors. Their arguments fall into seven main categories, addressing issues related to (a) production, (b) economics, (c) health, (d) the environment, (e) development, (f) risk, and (g) politics. Each of these is considered in turn.

The most salient argument for GMCs is that higher quality foodstuffs can be produced in greater quantities, more than meeting market demand. The main implication of this observation is decreased hunger, as more food can be produced while protecting biodiversity. This stems from the fact that land can be used more efficiently, with currently untouched land protected for future generations. Providing enough food for the world’s population has been deemed the “biggest problem facing the world” this upcoming

28. See Victoria Laurie, Seeds of Revolution, AUSTRALIAN MAGAZINE, Sept. 28, 2002, at 16; see also Exhibit 14, contained in the Appendix (highlighting Monsanto’s business interests, spanning a host of areas).
29. Pepa, supra note 27, at 430.
millennium, a comment echoed by followers of David Ricardo in the early 1800s and those who laud increased crop yields, reduced dependence on fertilizers, and reduced labor capital in the face of large population increases.

The second and third sets of arguments favoring GMCs address the economic and health benefits provided by GMCs. Economically, for example, Roundup Ready Soybeans are reported to save farmers hundreds of millions of dollars annually in increased yields and reduced waste, thus promoting sustainable farming. Furthermore, GMCs can be designed with enhanced nutritional profiles, readily applicable for developing pharmaceuticals. Mortality rates can be lowered as food production is expanded, simultaneously increasing the nutritional value of available food. An example is the Golden Rice developed by the Swiss scientist Ingo Potrykus to help address Vitamin A deficiencies leading to 250,000 cases of childhood blindness in Asia and “millions of deaths worldwide each year.”

The fourth and fifth sets of reasons for promoting GMCs address their environmental and developmental benefits. The former stems directly from the fact that crops can be designed which are resistant to pests, “drought and frost, able to grow in high alkaline and high metal soils, able to grow more quickly, and produce higher yields” by ripening more slowly. Because they often require fewer natural resources to grow, they also — as noted above — are less taxing on the environment. This particularly benefits both (a) developing countries (amassing the majority of GMCs’ “developmental” benefits), and (b)

34. See RICARDO, supra note 33, passim.

35. JANET E. CARPENTER, NATIONAL CENTER FOR FOOD & AGRICULTURAL POLICY, CASE STUDIES IN BENEFITS AND RISKS OF AGRICULTURAL BIOTECHNOLOGY: ROUNDUP READY SOYBEANS AND BT FIELD CORN 1, cited in York, supra note 31, at 429.

37. See York, supra note 31, at 430.

39. Id. at 147.

40. Id. at 146.
research scientists ("developing" new scientific ideas and experimental processes).

All these benefits are enhanced by a sixth set of arguments holding that GMCs carry very low risks. Two years ago, 3,200 scientists signed an on-line declaration drafted by AgBio World entitled "Scientists in Support of Agricultural Biotechnology," among them Nobel Laureates Norman Borlaug, James Watson, Paul Berg, Peter Doherty, Paul Boyer, and the 1998 National Medal of Science Recipient, Bruce Ames. This fact does not independently guarantee that GMCs are safe, particularly in light of the fact the declaration is decidedly partisan, though it does suggest that individuals with noted scientific achievement have voiced their feelings that the use of GMCs does not portend disaster.

Finally, there are the socio-political benefits. One cannot understate the degree to which public health issues have come to be a major geopolitical force. The case for fighting AIDS is the most striking example, as evidenced by U.S. Secretary of State Colin Powell's calling for strong HIV/AIDS prevention measures in developing countries as a key element of National Security. The role of developing GMCs in the interests of facilitating exchanges of views among various groups, particularly non-governmental organizations (NGOs), is also helpful. NGOs not only can provide information about GMCs, but encourage public participation in their creation and oversight; oversee the creation of new laws; influence corporate behavior (ideally positively); and oversee compliance with the law.

43. See Teel, supra note 38, at 148-156. But consider the fact that NGOs also can be seen as distorting the debate by (a) not representing the public, (b) overestimating health and environmental risks, and (c) responding inconsistently to regulatory concerns. Id.
The risks of GMCs often appear to significantly outweigh these benefits. In fact, GMCs have come to be seen as more “periah[s] than messiah[s]”44 as the unintended risks they do impose are amplified, since the world population is expected to grow from 5.8 billion today to 8.4 billion by 2025, and this growth will require a doubling of current food production.45 While gene alternations may thus make such growth possible,46 they are also harbingers of disaster. There are four main problem areas cited vis-à-vis GMCs, with the central theme that “when discrepancies between scientific consensus and government policy result in unwanted consequences, the blame is often placed,” for better or for worse, “directly on GM crop technology itself.”47

The first set of concerns stem from the inevitable fact that GMCs cannot be managed. Indeed, once they are “released” into the environment, the consequences of their uncontrolled reproduction in the face of decreased biodiversity cannot be predicted. This can take many forms, the first of which are the crops’ unknown side effects. Nitrogen fixing in high yielding crops is one example,48 as are the migration of trans-genes into non-target organisms via inbreeding, assorted mating, and outcrossing — namely, the processes by which domesticated plants hybridize with wild relatives, thereby producing new varieties.49 The main concern is that while “outcrossing is a common occurrence in conventional agronomy, outcrossing in transgenic plants may occur at significantly higher rates.”50

46. Id.
49. Anthony J. F. Griffiths ET AL., AN INTRODUCTION TO GENETIC ANALYSIS (7th ed.) 726 passim (2000) [hereinafter “GENETIC ANALYSIS”]. This is a particular concern in countries with significantly large amounts of transgenic crops. See Exhibit 6, contained in the Appendix (summarizing the leading countries with transgenic crops today).
York Times reported on October 2, 2001, for example, that Maize growing in fifteen different locations in Mexico contained genetically engineered genes without the growers' knowledge. This mirrored the StarLink® scare of 2000, when foodstuffs containing StarLink®corn, genetically modified to produce a bacterial protein Cry9c creating Bacillus thuringiensis (Bt) insect resistance, were discovered on supermarket shelves. This resulted in a nationwide recall of 300 kinds of corn-based foods. The concerns that Cry9c was an allergen stemmed from a range of clear scientific facts, including that it (a) "was relatively resistant to acid treatment;" (b) "was relatively resistant to breakdown by digestive enzymes;" (c) in the "general molecular weight range for an allergen (i.e., 10-70 kd);" (d) had a "native protein which was probably a glycoprotein;" (e) induced an "immunologic response in Brown Norway rats;" and (f) could "be found intact in the bloodstream after oral feeding in the rat model." For these purposes, StarLink® was originally only approved for "animal feed due to concerns it might cause allergic reactions in humans." The EPA later

experiment in which Arabidopsis thaliana mutants for the Csr1-1 allele of acetolactate synthase—conferring resistance to the herbicide chlorosulphuron—were compared with transgenic plants; "a survey of approximately 100,000 seeds showed that the per-plant outcrossing rate was 0.30% for mutant fathers and 5.98% for transgenic fathers, indicating that transgenic A. thaliana were roughly twenty times more likely to outcross than ordinary mutants."). The authors note that they did not know the underlying genetic mechanism, though highlight that "genetic engineering can substantially increase the probability of transgene escape, even in a species considered to be almost completely selfing." This is significant cause for concern since it suggests transgenes can escape even in the most elemental circumstances (i.e., a completely selfing species).

52. See infra Exhibit 10, listing the key properties and methods used to produce StarLink® corn.

noted that wet-milling corn could remove virtually all of the StarLink® protein from products made for human food46 and that StarLink® corn would in any event be essentially eliminated from the corn grain supply by 2002.57 The short-term problem was ultimately solved, though the far broader problem of unpredictability remained.

These fears of unpredictability — and ultimately unmanageability — are mirrored in the second major set of concerns about GMCs addressing broader environmental issues, particularly with regard to the unintended effects of GMOs (often linked with GMCs) on humans. Indeed, having general side effects is one concern, though the “unintended consequences in the ecosystems in which” the GMOs reside is another matter.58 The worry is that the negative effects of GMCs will transcend their unintended consequences on humans and damage the broader ecosystem within which they coexist.

When it comes to the specific effects of GMCs on humans, there are several worries. The first relates to the way in which lives will be significantly affected if allergic responses are either initiated or exacerbated by ingestion of GMCs. Soybeans, for example, are low in the amino acids methionine59 and cysteine,60 so people whose diets are bean-based face a nutritional deficiency.61 Researchers responded by transferring a gene from Brazil nuts which codes for large amounts of these acids. While seen as a great opportunity, these researchers were ultimately disappointed by the fact that the protein was also an

56 See U.S. ENVIRONMENTAL PROTECTION AGENCY, WHITE PAPER ON THE POSSIBLE PRESENCE OF CRY9C PROTEIN IN PROCESSED HUMAN FOODS MADE FROM FOOD FRACTIONS PRODUCED THROUGH THE WET MILLING OF CORN (2002), available at http://www.epa.gov/scipoly/ sap/2001/july/wetmilling.pdf (last visited Apr. 18, 2004); see also Exhibits 11-12, contained in the Appendix (illustrating the benefits of wet-milling).

57 See sources cited supra note 56.

58 York, supra note 31, at 433.

59 The linear structural formula for methionine is CH$_3$-S-(CH$_2$)$_2$-CH(NH$_2$)-COOH.

60 The linear structural formula for cysteine is HS-CH$_2$-CH(NH$_2$)-COOH.

61 ALLEN MCHUGHEN, PANDORA'S PICNIC BASKET: THE POTENTIAL AND HAZARDS OF GENETICALLY MODIFIED FOODS 120 (2000), cited in Kurt Buechle, The Great, Global Promise of Genetically Modified Organisms: Overcoming Fear, Misconceptions, and the Cartagena Protocol on Biosafety, 9 IND. J. GLOBAL LEGAL STUD. 283, 293 n.77 (2001). Consider also the case for new GMCs providing antibiotic resistance (given the fact that plants which receive a gene of interest also contain antibiotic resistant gene and there is concern this gene can be transferred to humans).
allergen. A second example is the case of antibiotics, whereby plants with genes of interest containing antibiotic resistant genes (for the purpose of assays) might transfer this resistance to humans and reduce the efficacy of antibiotics for treating humans. This is feared to stimulate the evolution of resistant plants and insects from overusing genetically modified seeds.

The third set of concerns stem from the legal and socio-economic consequences of GMCs and integrate the concepts of property ownership and economic power. First, there is the fundamental concern that GMCs are goods which are inherently 'public' in nature, but are now being patented by individuals and corporations. In this regard, the biggest problem with GMCs is not the GMCs themselves, but the “corporate attempts to dominate world markets by owning the technology.” The existence of patents and IP protections thus impose costs on society because the patentees are “able to charge monopoly prices” for their patented products or for “products made with [a] . . . patented process.” This may allow patentees to “recoup” their initial research investments, but puts consumers at a decided disadvantage, particularly in developing countries. The fact that companies can “sit” on their patents, effectively failing to exploit them and denying others the opportunity to do so, may cause the most concern in a society which can yield powerful insights from the technology. Also, IP rights to genes create a series of economic incentives compelling manufacturers to produce GMCs for the market very quickly regardless of the risks. Newly patented genes, it is argued, should not be patentable for any reason.

The fourth and final area addresses the more opaque issue of culture and the ways in which GMCs can deleteriously affect and change

62. Id.
66. See infra Exhibit 5, illustrating the huge investment costs associated with GMCs—and their increased use — in the world today.
68. Id.
cultures. Some cuisines, for example, may be predicated on "naturalness,"70 while in other cultures food represents a "symbol of belonging, [and] code of social or cultural recognition."71 This serves to explain why "international commerce in foods and ingredients has existed throughout human history, [though] local traditions and attitudes about diet persist."72 It has often been these factors which enable NGOs and the arguably "motley assemblage of environmental activists, farmers, scientists, and consumer groups" to publicize successfully their points against GM foods and "disrupt the powerful and pervasive multinational industry of agricultural biotechnology."73 Public opinion is molded by many forces, but particularly by NGOs. Often, this molding results in emotive responses to ensuing problems, divorced from scientific realities.74

In these regards, the seemingly chaotic responses to GM foods make more sense. Europe's digging up thousands of hectares of crops inadvertently planted with GM seeds,75 as well as an array of extensive U.S. federal guidelines allowing regulators to "question and/or halt

\begin{itemize}
\item 70 See Echols, \textit{supra} note 25, at 525.
\item 72 Echols, \textit{supra} note 25, at 525.
\item 73 Teel, \textit{supra} note 38, at 137.
\item 74 See Thomas R. DeGregori, \textit{NGOs, Transgenic Food, Globalization, and Conservation}, 13 COLO. J. INT'L ENVTL. L. & POL'Y 115, 115-16 (2002). DeGregori writes,

\begin{quote}
The organizations advance their agenda through emotional pleas, fear tactics, and propaganda, supported by little sound scientific or factual data . . . embark[ing] on neo-colonialism in a form of ecological colonialism . . . by seek[ing] control over the habitat or wildlife resources in developing countries . . . attacking modernization and industrialization. . . . While NGOs frequently decry the evils of 'globalization' . . . the organizations are no less global in their agendas.
\end{quote}

\textit{Id.} at 116.
\item 75 See \textit{Food Fight}, supra note 44, at 98. Noting that

30,000 hectares of land was reported to have been planted with Canadian canola seed by seed giant Advanta, into which a small volume of genetically modified canola or rapeseed had been mixed. It had accounted for less than 1% of the seeds, but the National Farmers Union and Scottish Agricultural Minister advised farmers to dig them up because they were unsaleable [sic] in Europe.

\textit{Id.}
development of a biotech plant variety76 if one of a large array of authorizations does not yield a clean "bill of health,"77 all result from GMC-based fears.

C. Recent Scientific & Political Developments

There have been four main sets of responses to these concerns in the hopes of realizing the benefits of GMCs: (a) labeling standards; (b) strong, mandatory regulations; (c) international agreements; and (d)

76 AMERICAN CROP PROTECTION ASSOCIATION, PLANT BIOTECHNOLOGY REGULATION: SCIENCE BASED AND CONSUMER ACCESSIBLE FROM PLOW TO PLATE 1 (2002), cited in York, supra note 31, at 439 n.99.

77 These authorizations include:

(1) Biosafety Committee Review: Following NIH guidelines, an advisory group evaluates the plant for potential health and environmental risks;
(2) Greenhouse Approval: USDA determines the adequacy of research facilities for biotechnology development;
(3) Field Trial Authorization: GM crop developers must receive USDA approval for field trials and submit summary reports;
(4) Seed Transport Authorization: USDA oversees the shipment of GM seeds from facilities to the field trial sites;
(5) Commercialization Permission: APHIS experts must review all field trial studies before a GM crop can be grown, tested or used for traditional plant breeding without further USDA action;
(6) Experimental Use Permit Approval: EPA must grant an experimental use permit (EUP) for test of 10 acres or more;
(7) Food Tolerance or Exemption: EPA examines the product characterization, toxicology, allergenicity, non-target organisms, environmental impact and pest resistance to establish limits on the amount of pest-control proteins in GM foods;
(8) Product Registration: EPA reviews all relevant environmental and toxicological studies before deciding to register a GM product;
(9) Review Process: FDA's review procedure is in the process of moving from a voluntary, albeit universally used, consultation mechanism to a mandatory four-month-prior-to-release notification mechanism requiring a showing by the introducing party of substantial equivalence; and
(10) Post-Commercialization Review: All three regulators have the authority to demand the immediate removal from the marketplace of any product in the case of new and valid data indicating a question of safety for consumers or the environment.

Id. at 2-4, cited in York, supra note 31, at 439 n.100.
recommended, largely unsupervised guidelines.8 Unfortunately, none of these can adequately suffice, largely stemming from the fact that they each try to address a part of the issue without considering the problem in its entirety. When one considers the Food and Agriculture Organization's key guiding principles iterated in the late 1990s, one can better envisage the enormity of the task. These included

(a) the sustainable use of plant genetic resources is essential for increasing agricultural productivity, and this fact can contribute not only to food security but also to natural development, allowing both the alleviation of poverty and starvation;

(b) modern agriculture is the most important cause of loss of genetic diversity, and the loss of diversity increases the possibility of crop losses; and

(c) much needs to be done, and done locally . . . [and] in the long term the preparation of a Report on the State of Agricultural Diversity [globally] should be considered.79

With these in mind, the first and most common governmental response has been labeling regimes which stipulate that if a food contains GMCs, this fact should be noted and the market can decide if genetic modifications should be rewarded. Consumers will be able to decide if the benefits outweigh the costs. An example of a labeling scheme includes a proposal of the FDA for GM producers to label their products with certain information if the absence of the information may

(1) pose special health or environmental risks (e.g. [allergens, toxins and] . . . protein products used in very low calorie diets);

(2) mislead the consumer in light of other statements made on the label (e.g. requirement for quantitative nutrient information when certain nutrient content claims are made about a product);

or

(3) [lead consumers to] . . . assume that a food, because it is similar to another food, has nutritional, organoleptic, or

78. This list (assembled by this author) parallels several others, such as that proposed by Echols, supra note 25, passim, listing five key responses, namely: (a) labeling, (b) treatment, (c) testing and certification, (d) destruction, and (e) bans.

79. Souza, supra note 32, at 147 (citing FOOD AND AGRICULTURE ORGANIZATION (FAO), REPORT ON THE STATE OF THE WORLD'S PLANT GENETIC RESOURCES FOR FOOD AND AGRICULTURE-PREPARED FOR THE INTERNATIONAL TECHNICAL CONFERENCE ON PLANT GENETIC RESOURCES 6, 8, 13, 15 (1996)) [hereinafter FAO].
functional characteristics of the food it resembles when in fact it
does not (e.g. reduced fat margarine not suitable for frying). 80

These guidelines have parallels in other jurisdictions, though are often
inconsistent, leading to the fact that labeling standards vary from place
to place and there is no consistent labeling protocol. 81 Probably the
most controversial step in these regards was that taken by an E.U.
Directive in October 1999 requiring the “mandatory labeling of novel
food products containing more than one percent engineered DNA or
protein content (and insinuated associated food safety risks based on
the ‘precautionary principle’),” 82 discussed in greater detail below.

A second major set of responses has been to legislate, and to
legislate rigorously. In 1996, for example, the EU rejected the use of
genetically modified Maize corn seed, arguing that the convention on
Biological Diversity was too weak and it had to take matters into its
own hands. 83 This was largely in response to companies producing
products which were not just resistant to pests, but were sterile. 84
“Terminator genes,” as they were called, had been originally
developed by the USDA at a comparatively marginal cost of just
under $250,000 in cooperation with Delta and Pin Land Company, the
largest producer of cotton seeds in the United States with a seventy-
three percent market share. 85

A third major route for managing GMCs has involved relying on
international agreements. Article XX(b) of the General Agreement
on Tariffs and Trade (GATT) allows governments to enact trade

80. Press Release, U.S. Food and Drug Administration, Guidance for Industry:
Voluntary Labeling Indicating Whether Foods Have or Have Not Been Developed

82. Briefing Paper for the June 13, 2000 meeting of the ACIEP, Advisory
Committee on International Economic Policy (ACIEP), U.S. Department of State
24, cited by York, supra note 31, 453 n.178; see also infra Exhibit 15, highlighting
how most countries about to join the E.U. do not want GM products distributed
within their borders.

83. Land and Resource Management Division of the University of Colorado,

84. Forum Proceedings, A Greener Shade of Crimson: Law & the Environment

85. Nathan A. Busch, Jack and the Beanstalk: Property Rights in Genetically
Modified Plants, 3 MINN. INT’L PROP. REV. 1, 121 nn.470-472 (2002).
barriers "necessary to protect human, animal, or plant life or health." More specifically, the International Biosafety Protocol approved in 2000 by representatives of 130 countries regulates the international trade of genetically modified organisms (GMOs). The trade regulations in the Biosafety Protocol mirrors principles first contained in the Convention on Biological Diversity passed in 1992, as well as the United Nations Convention on Biodiversity. The latter describes biodiversity as having an "intrinsic value" beyond its "ecological, genetic, social, economic, scientific, education [sic], cultural, recreation, and aesthetic values." These principles have thus informed the EU's approach to observing the rights of its member states to GMC protection by allowing any country to bar GMCs on the basis of any reasonable fears which the country might have relating to such crops. This EU approach has come to be known as the "precautionary principle," referenced above. Though its import lies in provisions which allow it to be used with the force of law, the precautionary principle is arguably on weak ground because of (a) regional differences in sentiments toward GM foods, (b) myths and poor reporting, (c) anti-biotech activism, and (d) a lack of a clear way to disseminate knowledge, understanding, and acceptance of new technological developments.

The fourth and final approach has been recommending guidelines for GMC producers to follow, but which governments would not

92. Buechle, *supra* note 61, at 300-305 (utilizing these four items as subheaders within his article to discuss the problems with the precautionary principle).
directly oversee. The U.S.-E.U. Biotechnology Consultative Forum,93 for example, recommended:

(1) mandatory pre-market testing for all GMCs,
(2) the refinement of the substantial equivalence concept,
(3) the development and implementation of GMO tracing technology,
(4) the fulfillment of a reasonable certainty of safety threshold prior to the use of risk-benefit analysis,
(5) a risk assessment regime whereby regulators should act proactively on the side of safety,
(6) the creation of a content-based mandatory labeling requirements for products derived from GMOs, and
(7) the implementation of the Cartagena Protocol on Biosafety.94

The idea is that NGOs would, as referenced above, act as enforcers and help ensure that the market manages itself independent of external regulation.

For the most part, these efforts have borne little fruit. Not only have many laws gone unrecognized — or been simply ignored — but the power of GMC producers has flummoxed even their greatest critics as IP rights have essentially dictated what is made, by whom, and when. Current rules in the United States, for example, state that farmers must leave twenty percent of their crops outside the corn belt to conventional corn, though only seventy-one percent of farmers follow the rule despite the fact ninety percent claim to know or follow it.95

Current contracts for food production, as well, are often bogged down with extraordinary details, making it practically impossible for every item to be addressed, particularly with regards to export concerns.96

There is also the fact that the Biosafety Protocol "does not apply to the inanimate products of living modified organisms such as corn cereal or soybean oil that might be made from genetically modified corn or soybeans," rendering key parts of the Protocol largely moot. 98 Monsanto, the largest producer of GMS, even once refused to submit to a labeling regime, 99 leading U.S. Trade Representative Robert Zoellick to use his "first major interview to accuse . . . companies of putting at risk the whole intellectual property rights system." 100 Indeed, it would appear that Mary Lynne Kupchella's argument that "[w]ith proper regulation, biotechnology can save biodiversity and solve numerous other environmental concerns" 101 is not as simple as she makes it seem. There are serious concerns over the decreasing access to new discoveries as the line between fundamental research and applied research has gotten thinner. 102

In essence, the core of the problem is improperly managed and mediated IP systems. Adrienne Clarke, Professor at the University of Melbourne, has noted explicitly that "intellectual ownership, not health concerns, is the real danger associated with GM foods," 103 and the main risk is of companies' patent rights overcoming farmers'

97. Safrin, supra note 6, at 608 (emphasis added).
98. See Cartagena Protocol on Biosafety to the Convention on Biological Diversity, Jan. 29, 2000, 39 I.L.M. 1027 (2000), available at http://www.biodiv.org (last visited Apr. 27, 2004) [hereinafter "Protocol"]. Key sections of the Protocol address (a) requirements for commodities (i.e., requiring parties to create a Biosafety Clearinghouse with information about products); (b) "Precaution" ideas (see discussion in the text); (c) Documentation (i.e., shipping different types of LMOs, identifying identities and relevant traits of LMOs); and (d) trade with nonparties (i.e., one needs to be party to the Convention on Biological Diversity before joining the Protocol).
99. The editors of the Australian Financial Review, commenting on this development, wrote that "by refusing to submit to a labeling regime, Monsanto had effectively cut its own throat." Editorial staff, The Growing GM and Drug Disaster, AUSTRALIAN FINANCIAL REVIEW, Mar. 22, 2001, at 41 [hereinafter "Growing Disaster"].
100. Id.
103. Clarke, supra note 24.
rights. Indeed, there are benefits to GMCs, such as crops grown to produce proteins instead of traditional fruit or fiber. But the outcry over Monsanto's "terminator seed," which could be seen as an unprecedented self-enforcing patent, seemed to give too much control to one single entity over both the farmers and the environment it was seeking to influence and control. There is no doubt that the "gene genie," freed from its bottle, has continued "promising to grant wishes to everyone" while letting alarmist responses go unabated and increasing calls to "go organic." The press has posited the argument that the future leading countries of the world will be those that let people come to "patent their ideas and take a cut every time someone else uses them." This, however, remains to be seen.

D. Case Study: Australia

Australia is an excellent case study for assessing alternative IP regimes which could better address these concerns. International and domestic critics alike have cited Australia's need to "get its house in order" with regard to IP issues. United States government officials, in fact, have specifically "renew[ed] [their] complaints of sloppy Australian protection of intellectual property rights," and public

104. See Laurie, supra note 28.
105. See Paul Parkinson, Future Farms, COURIER MAIL, Jul. 16, 2002, at H02 (noting the discovery at the Queensland Institute of Technology of INPACT (In-Plant Activation)—in which one of a plant's protein-producing genes is replaced with a gene "trained" to create the desired proteins instead.)
106. See Karen Charman, Genetically Engineered Food: Promises & Perils, MOTHER EARTH NEWS, Oct./Nov. 2002, at 74, 76 (writing how terminator seeds continue "to spark outrage throughout the world").
107. Editorial Staff, Harnessing the Gene Genie, PERSONAL INVESTOR, Sept. 1, 2000, at 40 [hereinafter "Gene Genie"]).
111. Editorial staff, US Slams Australian Bans, AUSTRALIAN FINANCIAL
interest critics have called for “corporate ownership of intellectual property rights” in Australia to be “watched.” Critics of Australia’s government note that Australia’s problem is a need for an IP regime where IP “can be protected, developed and traded from Australia” because too often the country has “sold the rights to publicly funded research at a very early stage to get paltry returns.” Economists would likely cite the need for a system which accounts for Australia’s comparatively small economy (mirroring its small population). Australia is unique in having (a) a small population with high average incomes; (b) large agricultural and mining sectors which are highly competitive and export oriented; (c) a developed manufacturing sector highly protected and highly concentrated; (d) a large service sector employing seventy percent of labor force; (e) foreign investment as a major influence on economic development; (f) major sectors with oligopolistic industry structures; and (g) status as a heavy net importer of technology (shared by all less developed countries). These points lead to a set of interests which should be arguably integrated into an IP system for GMCs.

The Constitution of the Commonwealth of Australia charges the Parliament with overseeing “[c]opyrights, patents of inventions and designs, and trademarks.” Arguments have thus been levied that the High Court needs to transcend its current approaches to interpreting this law — which have been quite literal — and instead pursue a broader approach characterized by a more purposive rationale of the Constitution’s provisions (i.e., focusing on the framers’ intents). This would allow for more creative solutions vis-à-vis novel regulations and

113. Clarke, supra note 24 (emphasis added).

114. For more information, see the CIA WORLD FACTBOOK ON AUSTRALIA, available at http://www.cia.gov/cia/publications/factbook/geo/as.html (last visited Apr. 17, 2004).

115. RICKETSON, supra note 65, at 871; see also infra Exhibit 1, illustrating that Australia is also the least densely populated country on earth.

116. AUSTL. CONST., § 51 (xviii).

118. See, e.g., The King v. Brislan, Ex parte Williams (1935) 54 CLR 262, 282-3, cited by Chin, supra note 117, at 626 n.127.
approaches to managing IP for GMCs. To date, the main set of provisions which have governed IP interests is contained in the Patents Amendment Act 1979 (Cth). One of the main problems cited soon after the legislation passed, however, was the fact that it applied the same sets of standards to all types of patents and, in particular, petty versus regular patents (i.e., requiring an "inventive step" approach, the importance of which will be discussed in greater detail below). These were later amended with the Patents Act 1990 (Cth).

Most recently, Australia sought to accommodate the unique needs of GMCs by creating an "Innovative Patent System" in 1997 to encourage "individuals and small to medium sized businesses to realize their good ideas." This stemmed from a review by the Advisory Council on Intellectual Property (ACIP), with the legislation ultimately watering down the "standard of inventiveness" so that protection would be "withheld if the claimed invention varie[d] from previously publicly available articles, products or processes 'only in ways which make no substantial contribution to the effect of the product or working of the article or process.'" The idea was that the approval of new, novel IP patent applications needed to be streamlined and this was the most effective way to do so.

Subsequent events proved this approach largely unworkable for IP and biotechnology inventions. In May 1999, the Australian government formed a new agency, Biotechnology Australia, to address biotechnology and GMFs along with an Interim Office of the Gene Technology Regulator to administer a voluntary labeling code until

122. See Roland Liesegang, German Utility Models after the 1990 Reform Act, 20 AIPLA Q.J. 1, 4-5 (1992), cited in Janis, supra note 121, at 158 n.43.

more formal legislation could be passed by Parliament.124 Just three months later in August, the Australia and New Zealand Food Safety Council decided in principle on mandatory labeling of GM food, though the cost was estimated at more than $A 2 billion (U.S. $1.5 billion)125 in only the first year, compelling the council to rethink its options.126 In March 2000, a revised report dramatically reduced the estimated labeling costs to $A 315 million. The report was followed by a 1,000 hectare-trial of GM cotton in Western Australia; after illegal GM canola was found dumped in a bin in South Australia in April 2000, however, the West Australian government froze all commercial releases of GM crops for two years.127

These events precipitated the Australian Patents Amendment Bill 2001 (Cth),128 which sought to make it easier for individuals to patent GM products, though it did not take any steps to address directly the risks. Indeed, the Bill widened the scope of IP publications which qualified for meeting the "novelty, inventive step, and innovative step"129 requirement for patent protection (i.e., they could be from anywhere in the world instead of just in Australia) — but not much else. This arguably harmonized Australia's legislation with other patent regimes, though on its face it was somewhat superficial. It did little to address issues stemming from the 1997 amendments which created a "second tier" patent scheme, which by all accounts was not working as was hoped. Mark Janis, who wrote extensively about such schemes in a recent article in the \textit{Harvard International Law Journal} noted many problems with such "second tier" schemes, including the observations that (a) lower application fees bear little relation to ultimate costs, due to attorney's fees which can comprise fifty percent

\begin{itemize}
 \item 124 \textit{Food Fight}, supra note 44.
 \item 125 See http://www.x-rates.com/calculator.html (last visited Apr. 17, 2004) (providing swift currency calculations on the web and noting an exchange rate of A $1.31 to US $1).
 \item 126 \textit{Id.}
 \item 127 \textit{Id.}
 \item 128 "Cth" refers to Commonwealth (i.e., federal) legislation passed by the Australian Parliament, as opposed to state and territory legislation passed by one of Australia's seven states or the Northern Territory [these include — proceeding clockwise from the northeast — Queensland (Qld), New South Wales (NSW), the Australian Capital Territory (ACT), Victoria (Vic), Tasmania (Tas), South Australia (SA), West Australia (WA), and the Northern Territory (NT)].
\end{itemize}
of acquisition costs and later enforcement actions; (b) speed is largely a misnomer since enforcement actions require judicial review; (c) the standard for "nontraditional subject matter" is also a misnomer given its resemblance to the standards for regular patents; and (d) little, if any, GMC technology comes from smaller, "indigenous" enterprises, rendering the system largely moot. With secret trials of GMCs reported in the Australian outback and the risks of GM pollen integrating with wild-type strains, IP issues spanned a much broader scope than the issues addressed by the most recent bill.

Australia's attempts to revamp its IP system thus failed to address key issues. Nothing in its amendments addressed the argument that strong IP protection was "necessary to offset the enormous cost of research" in IP areas, though the technologies were of such a nature that they seemed like public goods. David Dumaresq, Head of the Australian National University's Faculty of Science, stated, "Australians will be giving away intellectual property rights over the basic building blocks of life if genetic modification is allowed to continue... making the mistake scientists of the 19th century did not make." On the other hand, at issue were "basic biological processes" which often appear to defy private ownership. Kim Woods draws a parallel between GMCs and basic oxidation processes: it would be madness to require scientists to pay royalties on basic chemical processes, she argues, just as it would make little sense to require royalties to be paid on genetic manipulative processes. A prime example of this is the pPlex technology developed by RhoBio, a joint-venture between Rhone-Poulenc Agro and Biogemma, in cooperation with CSIRO, Australia's National Research Organization. pPlex is essentially a set of "DNA switches for turning genes on and off, enabling the expression of genes giving plants new trait[s] such as

132. See Laurie, supra note 28.
133. Mary A. Rieger et al., Pollen Mediated Movement of Herbicide Resistance Between Commercial Canola Fields, 296 SCIENCE 2386-2388 (2002); see also Exhibits 2-3, contained in the Appendix (highlighting results of the study).
134. Weston, supra note 1, at 380.
136. Id.
herbicide tolerance or resistance to insects or disease. In many ways, however, this is neither unique nor novel because this is a fundamental process which is present in all genes and applied by humans who first developed crops thousands of years ago around the Tigris and Euphrates rivers. A stronger argument can be made for patenting the research work by teams from Belgium and Australia to "identify and patent sequences of genes from three strains of banana streak virus." Because the teams focused on identifying three gene promoter sequences from the virus which acted to switch on 154 new genes so the plants exhibited a set of desired characteristics, their 'discovery' could be seen as more "novel." In Australia, it is not clear which of these ostensible inventions would be protected. Furthermore, a proposed Gene Technology Act does little but create "GM-free zones" within states to address the fear that Australia would lose key overseas markets if GMCs got into the supply chain.

III. THE ROLE OF INTELLECTUAL PROPERTY (IP)

A. Power Dynamics, Floating Seeds, and Localizing Fault

As noted above, IP issues are arguably the biggest stumbling block — and source of potential benefits — of GMCs. IP rights and guidelines ultimately determine the amount of money a technology owner can make by allowing the owner to set margins and establish license fees based on market forces. An IP owner can also influence where production will occur and dictate the terms of trade. Australia, in these regards, has been cited as not being "particularly clever at devising structures in which intellectual property can be protected, developed and traded" from Australia because it has too often "sold off rights to publicly funded research at a very early stage for paltry returns." There are issues addressing international trade, which in
Australia's case are poignant given its small size, and feeling that in order to "maintain its edge" in world agriculture, it needs to "identify genes" important for these purposes. Finally, there are issues of where IP rights and responsibilities begin and end; in the case of GMCs and floating pollen particles, these issues address who should be held responsible if nature incorporates GMCs into its fold and these GMCs are unknowingly used by others. A series of additional issues further deserve mention in these regards, including (a) the current nature of GMC research and IP owners; (b) the wide array of individuals affected by GMCs; (c) the subtleties of defining IP rights for GMCs; (d) the problems of concentrated market power; and (e) more general policy concerns. They all help "set the stage" and give one a sense of the broad range of issues surrounding IP rights and GMCs today. Each of these is considered in turn.

First, it is important to recognize that most biotechnology companies are small and have tight resources and, thus, little power. The current IP regime, with or without second tier patenting systems, is thus deleterious because of the likely risk of litigation over issues which are neither clear nor clear-cut. The prohibitive costs of enforcing patent rights has become a major problem, with second tier patent systems proving inadequate because of their promises of shorter term protection and less rigorous protection standards. Indeed, a second tier patent system cannot solve access problems that may vary dramatically from place to place (making harmonization across borders incredibly difficult, if not impossible) and fails to consider enforcement costs. There is also no doubt that patenting is essential for researchers in the modern era. A clear example is the "blue gene" in carnations, which Florigene was able to patent and trademark just three months before its rival resulting in the famous Moondust carnation en route to developing the elusive blue rose. If one does not patent quickly, then one's discovery could be claimed by others.

145. Weston, supra note 1, at 380 (noting that "[in] 1998, there were 1,283 domestic biotech firms, roughly two-thirds of which employed fewer than 135 persons").
146. See Janis, supra note 121, at 152.
147. Id. at 154.
149. An example of this in the case of Trademarks is the image of bell which had been associated with the collection of companies known as the "Bell system"
Second, the individuals affected by GMCs now extend well beyond the individuals who expressly purchased rights or consciously assumed risks associated with the GMCs, and this poses significantly challenging legal and philosophical issues with regards to who should have responsibility for GMCs' unintended consequences. A study of canola pollen drift in Science on sixty trial fields across South Australia concluded that unwanted gene transfer only occurred in 0.07 percent of cases — supporting the conclusion that “non-GM crops” were not “in any danger.” On the other hand, as discussed below, seeds have been found to float and farmers have been held responsible. Monsanto went to efforts to ensure that it retained property rights for seeds used by those who purchased them, though it has taken actions indicating it should have rights to ‘floating seeds,’ too. This underscores the imperative of improving regulatory processes to “ensure a proper weighing of the full social benefits and costs of agricultural biotechnology” and to “clarify liability rules governing the use of agricultural biotechnology.” There is also the fact that patents have been used to gauge farmers. A case in point is the gene protecting cotton from insect attack, which was licensed at $110 per hectare to U.S. growers and $245 to Australian growers because of Australia’s marginalized position as an exporter. In this light, it is imperative that farmers be clearly accounted for as “integral part[s] of agricultural biotechnology,” especially when property rights are interpreted.

A third main area addresses the way IP statutes and patents are construed. Does the word “growing,” for example, mean “making” or “using”? If the former, then a host of GMC IP rights flow to the producers of the seeds and, possibly, the genes, though users can be insulated from potential IP infringement; contrarily, if the latter,

operating local and long distance telephone services for AT&T before it was divided. The image, it turned out, had not been copyrighted, so an industrious employee did so and subsequently demanded millions of dollars in royalty payments for the image which was ubiquitously prominent throughout the United States. Interview with Leonard Macaluso, former engineer for AT&T Bell Labs, in Clifton, NJ (Mar. 12, 2003).

150. Rieger, supra note 133, cited by Laurie, supra note 28.
151. See generally Van Cleve, supra note 50.
152. Id. at 246.
155. See Busch, supra note 85, at 134.
individuals unknowingly incorporating IP technology in their own efforts (as farmers or organic cross-breeders) can be held liable for using the technology without permission. There are also different “schools” of thought vis-à-vis assessing patent infringements. The “American school” focuses only on a final product and testing if it is equivalent to other patented products, while the “European school,” in contrast, looks at the process taken to achieve a final result, which absolves all those achieving an already patented result of liability if the process they follow substantially differs from that taken by the original patent holders.\footnote{156}

As mentioned above, a fourth concern is the ability of large companies, like Monsanto, to corner the market with their technology. Monsanto’s response to being barred from using its Terminator Seed technology after its patent for glyphosate expired in September 2002 was to institute Technology Use Agreements (TUAs). These prevented farmers from giving unused seeds to others or saving seeds for the next season. They also, however, went beyond the use of the seeds and included provisions which required growers to only use Monsanto products on Monsanto GMCs. Monsanto also reserved its right to enter freely onto farmers’ properties and inspect growers’ fields for “seed pirating” whenever it wished.\footnote{157} One can legitimately argue that Monsanto was within its rights in securing these guarantees given its patents. On the other hand, the scope and extent were unprecedented and were an omen for many farmers of future legal demands and requisites. In this respect, the “biggest concern” about GMCs is the “corporate attempts to dominate world markets by owning the technology.”\footnote{158}

The fifth area is one of more general social policy, particularly internationally, with regard to GMCs. Many companies may want to head to countries with ostensibly strong IP protection, such as Singapore,\footnote{159} but what does this mean if the country’s market is obviously limited? A key area of policy evolution relates to developing rules that govern biological inventions internationally, fully addressing their “presumed risks to human health and the

\footnote{156} See York, supra note 31, at 434-435.

\footnote{158} Australian Associated Press General News, GM Danger Greatest in Control of the Technology (Sept. 25, 2002).

\footnote{159} See Chang Ai-Lien, Pulse Quickens for the Life Sciences Here, STRAITS TIMES, Nov. 1, 2002.
environment" worldwide. Tools for risk management exist, such as the aforementioned "precautionary principle," though this provides little protection because it can be applied intermittently and inconsistently. The concern with coordinating policy addressing living organisms and GMCs among disparate nations has remained. Calestous Juma and Victor Konde, for example, make the telling observation that "historically, living organisms have fallen outside the scope of protection by most intellectual property systems; now, the question is whether it falls outside the public interest."

These points culminate in the proposition that it is imperative for countries like Australia — instead of focusing energies on secondary patent protection regimes — to "direct[] energies towards the reform of regular patent law, and towards the exploration of alternative avenues for protecting incremental innovation." The key question is how this can best be done.

B. Patentability Issues

The locus of IP protection is patent law, which is the main area needing revision to accommodate GMCs and their related technologies. Basic patent protection law is essentially quite simple: one gets a limited term of protected "exclusivity" to a new invention (the benefit) by making the discovery completely available and accessible to the public (the cost). Individuals cannot directly benefit from the invention because of the exclusive rights granted to the patent holder. It is hoped that understanding the patent and what it creates, however, can and will stimulate further research, discoveries, and inventions. In the United States, the first country to introduce a formal patent regime, patent laws stem directly from the Constitution. Article 1 explicitly states that one of Congress' goals is to "promote the Progress of . . . useful Arts, by securing for limited Times to . . . Inventors the exclusive Right to their respective . . . Discoveries."

In essence, patentable items must be novel and useful and "non-obvious"; in Australia, similar to many other developing nations, these concepts are captured in the statutorily specified needs for

161. Id.
163. U.S. CONST. art. 1, § 8, cl. 8.
"novelty," an "inventive step," and an "innovative step." Novelty is required as a barrier from preventing technology from being patented which is already in the public domain; utility, at least in the United States, ensures that the government only gets involved if the public is expected to derive benefits; and non-obviousness (or inventiveness) is necessary to prevent granting rights to individuals for taking actions which would be apparent to one skilled in the relevant field. These rights vest when the object takes physical form and are largely rooted in the old-fashioned ideas of inventors making new objects in backyard barns, such as the prodigious John Yates.

The theoretical underpinnings of patent law stem from many sources. Foremost are fundamental principles of property which, generally speaking, recognize human "dominion over a thing reinforced by the power of exclusion." Foremost in bringing such "dominion" to fruition is the idea of "first occupancy"—namely, the fact that he who stakes the first claim on something takes the thing. This concept was the basis of the European settlement of Australia, which viewed the land as terra nullius (literally: land belonging to nobody), albeit this concept was debunked by the High Court's recognition of Native Title in the famous Mabo case. The second major underpinning of dominion is Locke's concept of "labor-
insertion”—namely, that “a person is entitled to the fruit of his labor,”174 but not all products of one’s labor constitute property (e.g., one’s child) and not all property is the product of one’s labor (e.g., one’s internal organs).175 The patent, then, is an attempt to elucidate one’s “dominion” over certain ideas in a quid pro quo statutory bargain whereby the patentee gets a monopoly while giving the public knowledge it would not have otherwise obtained.176 Patents are thus a “law of secrecy supported by the law of contract” capturing elements of both branches of law.177 As such, one must ask whether this exclusion makes sense for GMCs and, if not, how it should be changed. Independent of the philosophical arguments that nothing which is “naturally occurring” and is a “public good” should be owned, there is the fact that GMCs and genetic alterations also often lack specificity and inherent uniqueness. Copying genes is not like copying computer disks: it is a quasi-binary system, with the replication process (through RNA) neither necessarily exact nor secure. Variation and mutation is the essence of genetic development and genetic analysis; thus, even the best “inventions” can be changed by nature itself.178

The locus of this problem stems from the fact that property is of three types and it is not clear which type GMCs are or should be. The first type, on which IP patent regimes are currently based, assume that GMCs are private property having (a) identifiable owners with (b) all or most of a core bundle of rights. The second type, in contrast, applies to commons property in which no individual holds a right to exclude others so multiple individuals can enjoy the privilege of using the property; this is most often applied to natural resources such as air and light. The third type, to which GMC technologies might belong, is anticommons property in which multiple users have the right to exclude others from a resource over which they disagree who should have access; this then ensures that nobody has the effective privilege of using or accessing the resource. The law recognizes, in the case of private property, the use of easements to ensure individuals’ rights to certain property; with anticommons property, however, easements are impossible because of the de facto inalienable private property rights which contribute to the anticommons. In the case of GMCs, which

174. See Yelpaala, supra note 2, at 160.
175. See id. at 133-4.
177. See Yelpaala, supra note 2.
178. Essentially, mutations are induced in GMCs to create the desired results. See Exhibit 4, contained in the Appendix, listing the methods used to induce mutations in developing a range of major GMCs.
often rely on technologies and "upstream" research requiring sets of pieces to be assembled — all owned by different individuals — "concurrent fragment"179 anticommons property results (i.e., a series of protected pieces which either cannot be assembled without cross-licensing agreements or, in the case of Monsanto, are owned entirely by Monsanto which controls all access rights). The pre-clinical discovery phase of drugs illustrates this well, with the segments of (a) gene sequencing, (b) gene hunting, (c) gene functioning, (d) drug target identification, and (e) validation all needed to make a successful drug; none can be overlooked or avoided.180 Similarly, genetic information resists control because it exists within every living being and "will continue" to do so "regardless of the institutions created to deal with the legal repercussions of its manipulation."181 GMCs thus appear to be quintessential commons property, with anticommons repercussions.

For these reasons, GMCs and other genetic inventions "initially struggled to overcome the utility barrier to patentability,"182 with lower standards drawing opposition because of their tendency to recognize IP rights to property whose functions were unknown. Cases in point are gene sequences, for which individuals could theoretically gain patents even when others discovered what the sequences actually did.183 In these regards, problems emerged about the written description requirement and ensuring that descriptions were full and complete.

One of the first seminal cases addressing this matter was \textit{Regents of the University of California ("UC") v. Eli Lilly,184} in which UC sought to prove infringement of a patent185 which it had obtained for identifying DNA sequences comprising vertebrate insulin-encoding regions and bacterial expression vectors containing the sequences. Eli Lilly had used a bacterial system to produce a type of human insulin after attaching a length of bacterial protein; the bacterial protein portion was then subjected to a cleavage step from which active human insulin

179 Janis, \textit{supra} note 121, at 202.

180 \textit{See} Gene Genie, \textit{supra} note 107.

182 \textit{See} Weston, \textit{supra} note 1, at 388.

183 \textit{See id.}

184 \textit{Regents of the University of California ("UC") v. Eli Lilly, 119 F.3d 1559 (Fed. Cir. 1997).}

185 Patent no. 4,652,525 was at issue in the case. \textit{See Regents, 119 F.3d at 1569.}
emerged.186 The UC patent was ultimately deemed invalid because it failed to describe its invention adequately in writing.187

Another major challenge posed by GMCs and genetic inventions is the genetic code's degeneracy, and the fact the code can change dramatically over time.188 Given the fact that each amino acid can be described by a range of different codons,189 the question arises as to how specific one can or should be required to be in patenting a sequence. The effect of a small modification of an amino acid in a protein (e.g., by the substitution of one amino acid for another) can have either minimal or dramatic effects.190 Whether or not a substitution alters the backbone of a given protein, destabilizes the hydrophobic core, results in significant steric clashes, or destabilizes key hydrogen bonds all contribute to determining if the change is significant. Despite the advancement of science, it is still impossible to predict a protein's exact structure simply given its amino acid sequence. However, key patterns and trends have been identified.191 This has led academicians such as Kojo Yelpaala to propose that there are three levels of patentability for modern genetic innovations.192 The first are those discoveries which have been simply outlawed because they offend moral sensibilities, independent of specificity; human cloning and creating new stem cell lines fall in this area. Second are items which are subjected to more serious scrutiny, such as gene-therapy, organ cloning, and developing new seed, plant, and animal varieties, largely hinging on whether scientists are creating anything

\begin{itemize}
 \item 186 Weston, \textit{supra} note 1, at 391.
 \item 187 \textit{Regents}, 119 F.3d at 1569, \textit{cited in} Weston, \textit{supra} note 1, at 391 n.116.
 \item 188 \textit{See generally} GENETIC ANALYSIS, \textit{supra} note 49; JEREMY M. BERG, JOHN L. TYMOCZKO & LUBERT STRYER, BIOCHEMISTRY (5th ed. 2002); WILLIAM K. PURVES ET AL., LIFE: THE SCIENCE OF BIOLOGY (6th ed. 2001).
 \item 189 \textit{See infra} Exhibit 8, summarizing the codon sequences coding amino acids.
 \item 190 \textit{See infra} Exhibit 7, for examples of some dramatic effects.
 \item 192 \textit{See} Yelpaala, \textit{supra} note 2.
\end{itemize}
new or instead just doing what nature has already taught humans how to do (albeit more indirectly in the past). Finally, there are those items which appear to pose no threat to the "natural order" of things and should be simply specified as much as possible; identifying a means of mass producing a theoretical, naturally growing herb used by a group of indigenous people to address a simple malady would most likely fall into this category.¹⁹³

Responses to these issues have taken many forms. The United States passed the first patent law protecting breeds of asexually reproducing plants in 1930,¹⁹⁴ though not until 1970 did it protect sexually reproducing plants.¹⁹⁵ Utility patents for other living organisms were only recognized in the seminal U.S. Supreme Court case Diamond v. Chakrabarty,¹⁹⁶ upheld in J.E.M. Ag. Supply, Inc. v. Pioneer HiBred Intern, Inc.¹⁹⁷ In Diamond, Chief Justice Burger, writing for a divided 5-4 court, held that the language of section 101 of the Patent Act was broad enough to cover the patents of genetically engineered bacterium and microorganisms.¹⁹⁸ Justice Brennan, writing for the four dissenters, however, noted that despite the broad language of the Patent Act, Congress anticipated the need to address special biological inventions separately, as evidenced by the separate Plant Patent Act and Variety Protection Acts.¹⁹⁹ He further held that these acts "strongly evidence a congressional limitation that excludes bacteria from patentability."²⁰₀ Four special criteria for protecting plant products are noted in 7 U.S.C. § 2402,²⁰¹ buttressing Brennan’s

¹⁹³. See Yelpaala, supra note 2. See also infra Exhibit 13, illustrating figuratively a way of thinking about items which should and could be patented.

¹⁹⁸. Diamond, 447 U.S. at 305.

¹⁹⁹. Id. at 319; see also Klaus Bosselmann, Focus: Plants and Politics: The International Legal Regime Concerning Biotechnology and Diversity, 7 COLO. J. INT’L ENVTL. L. & POL’Y 111 (1996).

²⁰¹. 7 U.S.C.A. § 2402 states:

§ 2402. Right to plant variety protection; plant varieties protectable

(a) In general

The breeder of any sexually reproduced or tuber propagated plant variety (other than fungi or bacteria) who has so reproduced the variety,
claims. Five years later, the Board of Patent Appeals faced the question of whether seeds were patentable as living organisms like bacteria and microbes under Diamond. In Ex parte Hibberd, the United States Board of Patent Appeals and Inferences (BPAI) held that plant matter can be patented following the rationales in Diamond because § 101 included, according to the Supreme Court in Diamond, "everything under the sun made by man" and that the plant matter thus met the "statutory requirements for a utility patent."

Silence was the rule in the U.S. until 1999, when a Delaware court debunked the value of scientific processes in Monsanto Co. v. Mycogen Plant Science, Inc. In Mycogen, the Court held that two U.S. patents held by the Mycogen Corporation covering Bacillus thuringiensis (Bt) gene technology used to make insect-resistant plants were invalid because of the processes used to make the plants (which were genetically identical to two species already patented by Monsanto). The Court focused its analysis on the production process of a modified chimeric gene (MCG) which could be made in two ways. The first, known as "site-directed mutagenesis," was originally used by

or the successor in interest of the breeder, shall be entitled to plant variety protection for the variety, subject to the conditions and requirements of this chapter, if the variety is—

(1) new, in the sense that, on the date of filing of the application for plant variety protection, propagating or harvested material of the variety has not been sold or otherwise disposed of to other persons, by or with the consent of the breeder, or the successor in interest of the breeder, for purposes of exploitation of the variety....

(2) distinct, in the sense that the variety is clearly distinguishable from any other variety the existence of which is publicly known or a matter of common knowledge at the time of the filing of the application;

(3) uniform, in the sense that any variations are describable, predictable, and commercially acceptable; and

(4) stable, in the sense that the variety, when reproduced, will remain unchanged with regard to the essential and distinctive characteristics of the variety with a reasonable degree of reliability commensurate with that of varieties of the same category in which the same breeding method is employed.

203. Diamond, 447 U.S. at 309.
204. Nachtingal, supra note 157, at 56 n.51 (referencing Ex parte Hibberd, 227 U.S.P.Q. 443, 447 (Bd. Pat. App. & Infer. 1985)).
206. Id.
Monsanto. This process involved designing a gene by substituting one or more nucleotides at predetermined sites in a natural gene.207 The second, termed “chemical synthesis” and developed by Mycogen, involved creating synthetic DNA by chemically linking nucleotides in the proper sequence to produce the desired DNA sequence and then incorporating the synthetic DNA into the native gene to alter the sequence of that native gene.208 The defendant, Mycogen, argued that a MCG included only those genes made by site-directed mutagenesis — which it did \textit{not} perform — while Monsanto argued that a MCG could be made by either method and its patent for the gene in question essentially covered \textit{all} means used to make it.209 The Court ultimately ruled in Monsanto’s favor, establishing a precedent that Mycogen’s chemical synthesis method, while novel, broke Monsanto’s patent and Monsanto deserved compensation.210 Notably, this result comported with common law standards that “inventive steps” were inconsequential to an invention (i.e., the process leading to a result) and only the “novelty” mattered (i.e., the result itself). This dramatically increased Monsanto’s power, and had important implications for biotechnology IP rights.

Globally, these issues have found parallels in key international agreements, though few countries have faced judicial controversies similar to those in the U.S. by virtue of the amount of IP in the U.S. The Convention for the Protection of New Varieties of Plants (UPOV) in 1961,211 for example, dealt with breeders’ rights instead of patents, holding that IP protection for new plant varieties would only be upheld if the new varieties were (a) distinguishable based on one or more key characteristics, (b) sufficiently homogenous in their sexual reproduction or asexual propagation, and (c) stable in their essential characteristics.212 The General Agreement on Tariffs and Trade

\begin{footnotesize}
\begin{enumerate}
\item[208.] \textit{Monsanto}, 61 F. Supp.\textit{2d} at 143.
\item[209.] \textit{Id.} at 144.
\item[210.] \textit{Id.} at 150.
\item[212.] See Kim, \textit{supra} note 89, at 1160-61 n.120. UPOV also had a “saved seed exemption” allowing farmers explicitly to save seed for future growing seasons or sell “saved seed” to other growers. Nachtigal, \textit{supra} note 157, at 54 n.38. Congress
\end{enumerate}
\end{footnotesize}
(GATT) took up this mantle in the annexed Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS) by ensuring that IP patent protection was available for any inventions, whether products or processes, in all fields of technology, provided that they are new, involve an inventive step, and are capable of industrial application. Most notably, however, TRIPS also included a notable exception to patentability where any inventions could be excluded in the interests of protecting “human, animal, or plant life or health or... avoid[ing] serious prejudice to the environment.” In this light, critics have found TRIPS disquieting as it has opened up potential floodgates of disagreements over what things should and should not be patentable. In the Uruguay round, arguments over the scope of patent protections (i.e., developing countries had and wanted shorter IP patent protection times) and ways to accommodate piracy and the local use of foreign trademarks went unresolved.

The status of IP patent claims thus vary enormously in different jurisdictions, though there are two particularly challenging trends which deserve mention. First, it is now clear that one can overturn a patent by arguing that patent holders have failed to pursue rigorous experimentation to confirm all possible mutative arrangements of a genetically modified product. At issue here are the claims of patent holders which “circumscrib[e] the technology protected by the patent.” An excellent case study from the United States illustrating this principle is Amgen, Inc. v. Hoechst Marion Roussel Inc., which addressed the IP rights of the recombinant form of erythropoietin. In Amgen, Hoechst and Transkaryotic Therapies (TKT) defended their eliminated this in 1994 and the Supreme Court limited a “saved seed” exemption which remained in Asgrow Seed Co. v. Winterboer, 513 U.S. 179 (1995) (holding that a “grower is prohibited from selling seed to other farmers in excess of the amount needed to grow on his own farm”), cited in Nachtigal, supra note 157, at 55 n.42.

214. TRIPS, supra note 213, at 1208 art. 27(2).

215. See Pepa, supra note 27, at 417.

216. See id.

production of the protein in human cells because these cells produced a fully human protein in which carbohydrate groups were attached in the cells. This contrasted with Amgen’s process, which used hamsters in which, as expected, hamster-specific carbohydrate groups were attached. The Court held that Hoechst and TKT’s action fell within a “limited clinical trials exemption from patent infringement” and paved the way for more opaqueness in guaranteeing inventors the IP rights to their discoveries. How to strike a balance between ensuring that patents are broad enough to ensure benefits — yet not too narrow so they are open to litigation and struck down — is the ultimate balancing test which needs to be made.

A second major challenge is meeting the standards of “the doctrine of equivalents” (TDOE) referenced earlier. In essence, TDOE is a legal means to protect patent holders from “small changes” in their inventions when these are used by others. TDOE thus holds that “infringement exists when all elements of [an] invention are substantially equivalent to the elements of the accused device such that one skilled in the art would know of their interchangeability.” The “same-function-way-result (SFWR) test,” first enumerated by the Supreme Court of the United States in Graver Tank & Mfg. Co. v. Linde Air Prods. Co., captures the essence of TDOE. In Graver, the Court held that “[t]o prohibit [only literal infringement] would place the inventor at the mercy of verbalism.” At issue in the case was Graver’s patented welding flux composition containing alkaline earth metal silicates calcium and magnesium, which appeared strikingly similar to Linde’s flux composition containing calcium and manganese. Graver Tank prevailed, with Justice Jackson noting on behalf of the Court that “to permit imitation of a patented invention which does not copy every literal detail would be to convert the protection of the patent grant into a hollow and useless thing.” The advent of GMCs calls TDOE into question given the fact that GMCs exhibit variations which, ceteris paribus, would fail the SFWR test.

219. See id. at 105.
220. Id. at 104.
221. Gorton, supra note 181, at 336. Invocation of TDOE typically results in both a permanent injunction preventing the patent infringer from continuing his activity and extensive damages to put the patent holder back “in the position she would have been in had the infringement never taken place.” Id. at 338.
223. Id. at 607, cited in Weston, supra note 1, at 397 n.155.
225. Id. at 607, cited in Weston, supra note 1, at 398.
Studies of Monsanto's Roundup Ready™ Soybeans, for example, indicated that they exhibited a significant reduction in two out of three major phytoestrogens found in soybeans of equivalent species without Monsanto's genetic modifications\(^\text{226}\) and, impliedly, potentially other soybean varieties with other genetic modifications. This suggests that Monsanto's patent could easily be invalidated, though time will tell. Indeed, one approach would assess any new technologies element-by-element, looking to see if any steps were taken which suggested infringement; another would look at the whole, attempting to assess the overall import of the ostensibly new invention. The U.S. Supreme Court upheld the former approach in *Warner-Jenkinson Co. v. Hilton Davis Chemical Co.*,\(^\text{227}\) though it could distinguish future cases.

Applying IP doctrines to GMCs and biotechnology is rife with challenges. DNA sequences lack discrete elements, save for the nucleotides which comprise them. If one is analyzing a GMC, therefore, then it is virtually impossible for a patent to identify all the possible genetic sequences which could cause a plant to act in a certain way or fulfill certain expectations. The number of possible nucleotide changes could be massive — since other sequences could obtain the same result — not to mention deleted sequences. Also, the degree to which one could patent *knock-outs* poses a special challenge because one would be seeking to patent something which does not exist; this is particularly problematic when one considers the fact that DNA can be knocked out naturally (and regularly) in mitotic events. Furthermore, there is the fact that huge amounts of DNA are conserved between species, raising the question of whether a corporation can reserve its right to conserved genetic information across different species — including humans — over the entire planet. Clearly, these questions have no easy answers; they do underscore, however, why the clarion call for reforming IP rights is ubiquitous and seemingly unending.

Christian Dambrini writes that "globalization of economies cannot be effective without a strong, affordable, enforceable intellectual property rights system to protect its results,"\(^\text{228}\) echoing Joseph Villela's assertions how important it is "that all countries set high standards of intellectual property protection and enforcement in their national laws |

\(^{226}\) Lappe, *supra* note 95, at 39.

and effectively support and enforce the standards once the improved laws are in place.\(^{229}\) This is one of many next steps.

C. Lessons from Monsanto Canada

Probably the most seminal case to date addressing a host of these problems is *Monsanto Canada, Inc., v. Schmeiser*,\(^{230}\) decided last year in the Canadian Federal Court. While the case is not international precedent, its legal analysis is likely to be used by other courts in other jurisdictions to set precedents in the area of GMC IP property rights. Unlike other areas of the common law which are often domestically insulated, IP legal issues have transcended international borders. This makes sense given the extent to which IP-related activities, particularly vis-à-vis GMCs, cross borders. *Monsanto Canada* thus provides a troubling precedent.

Some background to *Monsanto Canada* is needed to understand the import of its holding. For over ten years, Monsanto had become a leading producer of herbicides, largely a result of its Roundup Ready\(^{\text{TM}}\) herbicide technology.\(^{231}\) Soon before its patent expired, however, Monsanto began marketing a Roundup Ready\(^{\text{TM}}\) seed which was more enduring, longer lasting, and naturally resistant to bugs. It also, most notably, contained a gene making plants resistant to Roundup Ready\(^{\text{TM}}\) herbicide.\(^{232}\) By cross-selling the seeds to its Roundup Ready\(^{\text{TM}}\) customers in advance of the expiry of its herbicide patent, Monsanto ensured that individuals making Roundup herbicide off its old patent would fail to gain any customers to whom it had sold its new Roundup Ready\(^{\text{TM}}\) seed. In a very short time, Monsanto was able to sell huge numbers of Roundup Ready\(^{\text{TM}}\) seeds, making them arguably ubiquitous across swaths of Canada.

At issue in *Monsanto Canada* was whether Percy Schmeiser, a local farmer, had infringed Monsanto's patent for Roundup Ready\(^{\text{TM}}\) seeds by planting a crop of glyphosate resistant canola having a gene which was the subject of Monsanto's patent. Schmeiser argued that he had

no intent and no idea that some of his crops had the gene. In fact, only trace amounts of plants with the gene of interest had even been identified. Monsanto's patent, specifically, was for a "genetic insert which, when introduced into the DNA of canola cells by a transformation vector, produces a variety of canola with a high level of resistance to glyphosate." In essence, this involved a cloning vector

233. Monsanto Canada, Inc., v. Schmeiser, [2002] FCA 309, at ¶ 8. Specifically, the patent identified the gene of interest as:

1. A chimeric plant gene which comprises
 (a) a promoter sequence which functions in plant cells;
 (b) a coding sequence which causes the production of RNA, encoding a chloroplast transit peptide/5—enolpyruvylshikimate-3-phosphate synthase (EPSPS) fusion polypeptide, which chloroplast transit peptide permits the fusion polypeptide to be imported into a chloroplast of a plant cell; and
 (c) a 3' non-translated region which encodes a polyadenylation signal which functions in plant cells to cause the addition of polyadenylate nucleotides to the 3' end of the RNA;
 the promoter being heterologous with respect to the coding sequence and adapted to cause sufficient expression of the fusion polypeptide to enhance the glyphosate resistance of a plant cell transformed with the gene.
2. A chimeric gene of Claim 1 in which the promoter sequence is a plant virus promoter sequence.

5. A chimeric gene of Claim 1 in which the coding sequence encodes a mutant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS).
6. A chimeric gene of Claim 1 in which the EPSPS coding sequence encodes an EPSPS from an organism selected from the group consisting of bacteria, fungi and plants.
7. A chimeric gene of Claim 1 in which the chloroplast transit peptide is from a plant EPSPS gene

22. A glyphosate-resistant plant cell comprising a chimeric plant gene of Claim 1.

23. A glyphosate-resistant plant cell of Claim 22 in which the promoter sequence is a plant virus promoter sequence.

26. A glyphosate-resistant plant cell of Claim 22 in which the coding sequence encodes a mutant 5-enolpyruvylshikimate-3-phosphate synthase.
27. A glyphosate-resistant plant cell of Claim 22 in which the coding sequence encodes an EPSPS from an organism selected from the group consisting of bacteria, fungi and plants.
comprising a gene which encoded the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) polypeptide. When expressed in a plant cells, EPSPS allows chloroplast transit peptides to transport it (or an enzymatically active portion thereof) from the cytoplasm of the plant cell into a chloroplast. This process ultimately "confers a substantial degree of glyphosate resistance upon the plant cell and plants regenerated therefrom."\(^{234}\) Because the Glyphosate inhibited an enzyme required to produce a particular amino acid essential for the growth and survival of a broad range of plants, plants sprayed with a glyphosate based herbicide, such as Roundup Ready\(^{TM}\) herbicide, would not survive. A canola plant grown from seed containing the modified gene, however, would be composed of cells with the modified gene and would survive if sprayed with a glyphosate-based herbicide.

Monsanto won the case, though the court's reasons pose significant concern. First, the court held that the property rights granted by the patent were so clear that — independent of whether Schmeiser did not intend to use the seed or even if the seed had naturally mutated — Monsanto's rights to the gene had been recognized by law. Second, there was evidence that Schmeiser had saved some seeds which were plant resistant and had thus been duplicitous with regard to the seed. Third, the court found that reasonable efforts had been taken to avoid the spread of seeds from other neighbors, but it was not incumbent on Monsanto to do more than was reasonably necessary to prevent the inadvertent spread of its seeds by individuals who purchased them.

The implications of the court's analysis were significant. First and foremost, it suggested that individuals could be held liable for innocently growing or helping reproduce GMCs. Second, these GMCs — even if resulting from natural, random mutations — would still be covered by the IP rights of whoever patented them. Even the unconscious production\(^{235}\) of GMCs with patented genes would be

\(^{28}\) A glyphosate-resistant plant cell of Claim 22 in which the chloroplast transit peptide is from a plant EPSPS gene.

\(^{45}\) A glyphosate-resistant oil seed rape cell of Claim 22.

\(^{234}\) See Monsanto Canada, at ¶ 38.

tortious activity demanding a cause of action for damages. One of the reasons why these conclusions are so onerous is their import: because GMCs are patented inventions which can reproduce, produce progeny, and travel without human intervention, they are essentially inescapable. Furthermore, GMCs are also, theoretically, reproducible unknowingly through the process of random genetic mutations. GMCs run the risk of completely redefining a host of legal concepts, such as inventiveness, individual autonomy, and tortious interference. Based on *Monsanto Canada*, Monsanto gained an unprecedented set of legally enforceable rights based on its patent. These include cause to enter on to private property and even confiscate that property without the owners' consent, based purely on a genetic sequence which could occur naturally.

D. International Concerns

Little has been done to address these concerns, and little is likely to be done. The WTO's TRIPS agreement, mentioned above, may have "globalized" traditional IP concepts, though has done nothing to assess the complexities of GMCs vis-à-vis individuals qua companies, companies qua countries, and different legal IP regimes in different countries. Similarly, the Cartagena Protocol on Biosafety — devoted to regulations affecting GMCs — does not impose a consistent labeling scheme for GMCs, though it does require labels for shipments of all food products, even if they have been shown to prove no risk whatsoever. Biotechnological developments have appeared to become simply "technical extension[s] of traditional agricultural selective breeding practices" which are both time-tested and "largely harmless or self-correcting." Depending on the degree to which other countries agree with this approach, GMCs run the risk of being given increasingly disparate treatment to the chagrin of those seeking greater controls. Floating seeds have no borders.

239. *Id.* at 249.
There is, however, some hope in the international arena. The Cartagena Protocol,\(^{240}\) while imperfect, empowers countries to refuse to import GMCs under the precautionary principle (i.e., the country can ban the import even if there is a lack of scientific certainty that something is dangerous). The Protocol also elevates environmental considerations to an unprecedented level, lauded by many environmentalists. The 1961 Union for the Protection of New Varieties (UPOV) similarly has increased its membership and helped ensure steps be taken to protect indigenous plants and foods.\(^{241}\) Depending on the degree to which GMCs are found to threaten indigenous varieties, this agreement could be used in limiting GMCs posing quantifiable risks.

Still, these initiatives only begin to address the broader set of issues which remain, including (a) “equitable concerns regarding the patenting of genetically modified products;”\(^{242}\) (b) the level of transparency for exports of genetically modified products; (c) import bans on genetically modified products; (d) liability for damage of genetically modified products; (e) liability for extraterritorial damage of genetically modified products; and (f) “long-term decline in global biological diversity.”\(^{243}\) The Biosafety Protocol negotiations broke down in 1999 over issues surrounding whether producers of GMCs had to obtain explicit permission from importing countries to proceed with their exports; tentative arrangements were subsequently negotiated, though the issue has not vanished.\(^{244}\)

Hopeful international solutions must be built on a commitment to address these issues, as embraced in the principles underpinning the WTO. The WTO, despite its critics’ fears, can work to achieve agreements which have met the needs of rich and poor countries alike. Its schemes have ostensibly been supported by the principles of (a) non-discrimination, as encapsulated under the Most Favored Nation (MFN) status, (b) national recognition, and (c) consistent elimination of quotas and non-tariff barriers.\(^{245}\) The clear need for international regulation of GMCs and the IP regimes which support them may thus

241. See Nachtigal, supra note 157, at 53-54 n.23.

243. Id.

244. See Kupchella, supra note 101, at 744 nn.193-195.

245. See Souza, supra note 32, at 167.
be redressed given increasing safety concerns and the interest in ensuring stability in international trade.246

Indeed, it is possible to allay the fears associated with the international community's addressing of GMC IP issues. Although trade representatives have stressed how “it would be a tragedy and health setback if the promotion of the flexibilities within the TRIP accord degraded into an assault247 on IP, this need not be so. Effective protection of IP is “critical for developing nations” because of their need to “find and develop” ways to deal with the public health challenges faced by their respective societies.248 This opens the door to considering “utility-based”249 standards for IP protection, as opposed to novelty or originality standards, in the interests of meeting these needs. Such standards could account for the risks associated with GMCs and mete out IP rights accordingly.

E. Hopeful Resolutions: Five Guiding Principles

It is impossible to design an optimal IP system accommodating GMCs in a vacuum. However, the previous discussion of Monsanto Canada and international developments suggest a set of five key guiding principles. By embracing these principles, actors such as NGOs, government representatives, and private citizens could begin developing new IP systems accommodating GMCs.

Principle 1: IP protection of GMCs must include multiple sets of rights. The first guiding principle is that IP protection for GMCs needs to acknowledge the rights of more than just the developers and manufacturers of the GMCs. To date, all IP systems focus simply on the developers and ensuring that “patent protection” grants them a monopoly to (a) refine the technology, (b) exclude others from making profits, and (c) make profits for themselves. In light of the Monsanto Canada case, however, this fails to address the interests of honest but

246. Id. at 171.

248. Id.

249. See the UK Utility Designs Act, 1843, (protecting “form” and not “function or principle”) 6 & 7 Vict. ch. 65, cited in Janis, supra note 121, at 156 n.25. It is worth highlighting that the Utility Designs Act embedded a “functional equivalent” ethos which arguably resulted in effective design protection.
unfortunate farmers who also have the right to (a) engage in the legitimate practice of farming, (b) maintain autonomous businesses, (c) use and dispose of their property as they see fit, and (d) prevent transgene contamination. Finally, the public shares the right to (a) a stable and safe food supply and (b) minimal impact level on the commonly shared environment for producing food. These rights impose obvious liabilities on the other parties; and these liabilities cannot, and should not, be left to miscellaneous statutes and courts to construe when the need arises.

Principle 2: New standards for IP protection of GMCs are needed. Current IP systems protecting GMCs apply standards which fail to address the complexities of GMCs. First, one could eliminate patent protection for GMCs entirely, so there would be no patents to infringe. This, however, fails to provide protection or any incentives to develop and improve GMCs. Second, one could simply lower the amount of time during which patents are in force. This, however, fails to address the more fundamental issues of the way in which patents are issued. Third, one could eliminate TDOE so there are no excessively broad patent constructions to manage. This, however, simply eliminates the one main semblance of flexibility in the IP system which can accommodate the unique needs of GMCs. Instead of employing these current standards, a broader set of guidelines needs to be developed which can accommodate an analysis of the unique characteristics of GMCs in order to facilitate comparisons between inventions within various biotechnological subgroups. Gorton proposes that a "pyramid test" be introduced — retaining TDOE though in a more flexible, yet rigorous manner — to begin imbuing a greater spirit of flexibility into the current system. In time, this could be used to help the system evolve even more dramatically.

253. See infra Exhibit 9, outlining the "pyramid" approach to applying TDOC. Essentially, in comparing two organisms with a given characteristic (such as a genetically modified gene), the processes in which a DNA fragments or genes were
Principle 3: New processes for ensuring IP protection GMCs need to be developed. The current system of IP protection for GMCs relies simply on patents which are reviewed by courts of general jurisdiction; however, something else is needed given their complexities. For these purposes, one can envisage a new system in which (a) judges with scientific backgrounds are appointed; (b) new notice requirements are established for public comment; (c) negotiated, contract-based settlements are increasingly accommodated — and encouraged — between conflicting parties to avoid expensive, drawn-out, extensive litigation; and (d) uniform application standards crossing state and international boundaries are applied. In this system, new processes would accommodate the new standards, and the new standards would be supported by these new processes. Only in this way can the risk of the anti-commons, discussed above, be avoided, in turn preventing "every grain of sand" from systematic ownership. In many ways, this principle counterbalances the first principle: it is important to recognize parties' broader sets of rights, though these rights are also limited. Private property exists, mistakes are made, and developing nations have special needs. Ideas integrating public clearinghouses on GMCs, public-private partnerships reviewing GMCs, and pre-market consultations are all possible.

Principle 4: Recognize concertedly that GMCs have a qualitatively different impact on society than previous inventions. It is essential to recognize in developing any new system of IP protection for GMCs that GMCs have an impact on society which differs dramatically from other inventions — predominantly because GMCs are living organisms. The impracticalities of labeling are illustrated by the fact that once seed is released into the environment, humans cannot

254. Definitions, for example, could be agreed upon — ideally transnationally. The term "transgenic plant," for example, is vague and might include all plants on the planet because one could argue that any gene of interest which can be demonstrated to have been altered is, by definition, transgenic.

255. See Souza, supra note 32, at 138 n.35, quoting FAO, supra note 79.
control the course of events. Similarly, the process by which GMCs are developed differs enormously from inventions of the past. Gone are the days of individual inventors in their living rooms. Large corporations and teams of researchers are now the norm. These “individuals” have different interests and deeper pockets than their predecessors. The latter is important in adjusting tort liability to require more stringent standards.

Principle 5: IP regimes for GMCs must have different theoretical underpinnings than typical IP systems. On the broadest level, the theoretical underpinnings of IP regimes for GMCs differ from other types of property. Kojo Yelpaala, in his telling discussion on the evolution of IP rights, references a range of property types recognized in Roman law. Several of these could be applied in developing new IP regimes for GMCs. Roman law distinguished between (a) things susceptible to private ownership, though not presently owned (res in nostro patrimonio) and (b) things not susceptible to private ownership, so not owned (res extra nostrum patrimonium). This latter category included (i) things owned by everybody, or common goods (res communes), (ii) sacred property (res sacrae), (iii) religious property (res religiosae), and (iv) religious antiquities (res sanctae). Thus, there were things susceptible to private ownership, though not owned, such as things governed by “divine law” (res nullius), and there were things assigned to new categories altogether. The time may now be ripe for creating a new set of property, res physciae (or “scientific biochemical things”), to which would be associated new sets of legal rights and responsibilities.

The above five principles are not representative of a given philosophy, though they address a range of interests which cross many philosophical lines. Indeed, they are utilitarian in the degree to which they seek to ensure that biotechnological developments are managed in ways which maximize the greatest good for the greatest number.

They are also Kantian in the degree to which they posit certain categorical imperatives (i.e., that GMCs are unique "inventions" which deserve special treatment).260 Third, they are libertarian, in the degree to which they suggest that individuals should be allowed to research, investigate, and develop new technologies as much as possible, albeit under the watchful eye of affected parties.261 Finally, they abide by principles akin to economic rationalism, in that they view GMCs as a form of property and as "instrument[s] for achieving . . . concrete societal objectives," with efficiency (defined broadly) as an implicit object and purpose of IP rights.262 Lines need to be drawn, and lines can be drawn, as illustrated by the global rejection of the "Terminator Seed" technology developed by Monsanto263 and increasing attempts to bound IP claims.264

262. \textit{See id.} at 180-81. There is a problem with using the word "efficiency" since biochemical patents are often linked to processes and these processes can often be hard to imitate in scope (in other words, one cannot obtain ownership over \textit{literally} all the processes which lead from A to B in a given genetic manipulation since these processes incorporate countless biological, chemical, and physical steps on the cellular, atomic, and subatomic levels).

263. Yelpaala, \textit{supra} note 2, at 208. The "Terminator Seed" technology was resoundingly rejected because of the public policy implications of the technology and illustrate the degree to which IP rights for GMCs already transcend traditional IP boundaries. Indeed, critics felt that an invention that "has as its motive, explicit or implicit, the destruction of a source of human ingenuity, the spread of knowledge, and the ability to tinker with ideas in nature should not be patentable." \textit{Id}. There was also the pointlessness of IP protection given the fact that the invention allowed its holder to create a natural 'absolute monopoly' not in need of any protection from humans.

264. Consider, for example, the increasingly common arguments that elements of an IP claim for GMCs should extend no further than . . . the composition of a genome constituting a transgene, inserted by genetic manipulation techniques, which is \textit{expressed}. The legal estate created by the granting of the claim is therefore to either an (a) expressed transgene, inserted into the plant genome by genetic manipulation techniques or (b) at most, to the composition of the plant genome with the expressed transgene inserted by genetic engineering techniques. The exclusive interest of the patentee is then the right of the patentee to exclude others from (1) making, (2) using, (3) selling, or (4) offering to sell a genome constituting an expressed transgene, inserted by genetic engineering techniques.
IV. CONCLUSION

Ensuring that the benefits of GMCs are best harnessed — and pitfalls avoided — will require a significant dose of will and creativity. It will imply significantly altering the ways in which IP rights for GMCs are distributed and managed, and it will transcend national borderlines. It will require significant investment, as well as political capital. And it will require imagination and inspiration, particularly in different forms of private-public partnerships if the public’s fears increasingly associated with GMCs are to be allayed.

Despite these seemingly highfalutin goals, resolution is possible, if not inevitable. This article proposes, as a start, five guiding principles which stem from the current GMC debate, particularly applicable to countries faced with (a) developing new IP systems, such as Australia, and (b) wresting with management of current IP systems, such as Canada. There is no reason to believe that novel solutions cannot be unearthed which also allow legislatures and international bodies to transcend their current approaches to the ways in which IP laws are made and adjudicated. GMCs are unique; and the legal protection afforded them must — and ultimately will — reflect this.

Busch, supra note 85, at 102 (emphasis and alphanumeric notations added).

265. See infra Exhibit 15, supra note 82.
APPENDIX OF EXHIBITS

Exhibit 1. Chart: No. of persons per square km for selected countries, 2000.
Exhibit 2. Graph: Percentage of ALS herbicide-resistant individuals in seed from nonresident varieties vis-à-vis distance from source fields.
Exhibit 3. Graph: Percentage of ALS herbicide-resistant individuals in sink fields, by seed varieties.
Exhibit 4. List: Key crops, cultivar names, and major methods used to induce mutations.
Exhibit 5. Miscellaneous charts depicting pharmaceutical and biotechnological R&D spending and areas of transgenic crops world-wide (sorted by types of crops and countries), various sets of years during late 1990s.
Exhibit 7. Photographs of corn and soybean varieties with genetic modifications.
Exhibit 8. Chart: Amino acids coded by different combinations of nucleotides.
Exhibit 9. Graphic representation of the 'pyramid' approach applied to GMCs.
Exhibit 10. Data on StarLink™ corn and the Cry9c gene.
Exhibit 11. Data on wet-milling corn.
Exhibit 12. Tables containing data illustrating that wet-milling corn is one way to reduce the amount of Cry9c protein in the corn.
Exhibit 13. Graphic illustrating ways of classifying possibly patentable items.
Exhibit 14. Graphic representation of areas in which Monsanto has developed business interests.
Exhibit 15. Chart: EU Eurobarometer survey of countries due to join the EU in 2004 re: attitudes towards GM food.
Australia is the least densely populated country on earth*

No. of persons per square km, 2000

* Australia's Bureau of Statistics reported Australia's population at 19,815,822 as of 10:21am (NSW EST) on March 2003, making it still the least densely populated country on earth; for up-to-the-second statistics and the population clock, see http://www.abs.gov.au/Ausstats. Source: World Bank; The Economist; South Australia Geological Society; Australian Bureau of Statistics; South Australia Museum; research conducted by C. Scott López
Exhibit 2

MOST POLLEN TRAVELS A COMPARATIVELY SHORT DISTANCE FROM ITS SITE OF ORIGIN

Percentage of ALS herbicide-resistant individuals in seed from nonresistant varieties *vis-à-vis* distance from source fields*

* Three individual samples were collected per field, with 190 individual collection locations. Source: Mary A. Rieger et al., *Pollen Mediated Movement of Herbicide Resistance Between Commercial Canola Fields*, 296 Sci. 2386, 2387 (2002).
Exhibit 3

DIFFERENT VARIETIES OF SEEDS TEND TO SPREAD OUT MORE WIDELY THAN OTHERS

Percentage of ALS herbicide-resistant individuals in sink fields, by seed varieties; number of fields screened are indicated above each bar.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Number of Fields Screened</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prismatic</td>
<td>13</td>
</tr>
<tr>
<td>Cherokee</td>
<td>2</td>
</tr>
<tr>
<td>Superscan</td>
<td>1</td>
</tr>
<tr>
<td>Bugler</td>
<td>1</td>
</tr>
<tr>
<td>Panda 160G</td>
<td>4</td>
</tr>
<tr>
<td>60cc3</td>
<td>2</td>
</tr>
<tr>
<td>Rainbow</td>
<td>2</td>
</tr>
<tr>
<td>Roper</td>
<td>5</td>
</tr>
<tr>
<td>Pueler</td>
<td>1</td>
</tr>
<tr>
<td>Chatton</td>
<td>8</td>
</tr>
<tr>
<td>Mystic</td>
<td>2</td>
</tr>
<tr>
<td>Durkaid</td>
<td>11</td>
</tr>
<tr>
<td>47C02</td>
<td>1</td>
</tr>
</tbody>
</table>

Exhibit 4

VARIOUS METHODS HAVE BEEN USED TO INDUCE MUTATIONS IN KEY CROPS
Key crops, cultivar names, and major methods used to induce mutations

<table>
<thead>
<tr>
<th>Crop</th>
<th>Cultivar Name</th>
<th>Method Used to Induce Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>rice</td>
<td>Calrose 76</td>
<td>gamma rays</td>
</tr>
<tr>
<td>wheat</td>
<td>Above</td>
<td>sodium azide</td>
</tr>
<tr>
<td></td>
<td>Lewis</td>
<td>thermal neutrons</td>
</tr>
<tr>
<td>oats</td>
<td>Alamo-X</td>
<td>X-rays</td>
</tr>
<tr>
<td>grapefruit</td>
<td>Rio Red</td>
<td>thermal neutrons</td>
</tr>
<tr>
<td></td>
<td>Star Ruby</td>
<td>thermal neutrons</td>
</tr>
<tr>
<td>burmuda grass</td>
<td>Tifeagle</td>
<td>gamma rays</td>
</tr>
<tr>
<td></td>
<td>Tifgreen II</td>
<td>gamma rays</td>
</tr>
<tr>
<td></td>
<td>Tift 94</td>
<td>gamma rays</td>
</tr>
<tr>
<td></td>
<td>Tifwey II</td>
<td>gamma rays</td>
</tr>
<tr>
<td>lettuce</td>
<td>Ice Cube</td>
<td>ethyl methanesulphonate</td>
</tr>
<tr>
<td></td>
<td>Mini-Green</td>
<td>ethyl methanesulphonate</td>
</tr>
<tr>
<td>common bean</td>
<td>Seafarer</td>
<td>X-rays</td>
</tr>
<tr>
<td></td>
<td>Seaway</td>
<td>X-rays</td>
</tr>
<tr>
<td>chic</td>
<td>Prairie Petite</td>
<td>thermal neutrons</td>
</tr>
<tr>
<td>St. Augustine grass</td>
<td>TXSA 8202</td>
<td>gamma rays</td>
</tr>
<tr>
<td></td>
<td>TXSA 8212</td>
<td>gamma rays</td>
</tr>
</tbody>
</table>

Exhibit 5

INCREASED R&D INVESTMENTS HAVE MIRRORED THE GROWTH IN TRANSGENIC CROPS — PARTICULARLY FOR SOYBEANS

Pharma & biotechnology
R&D spending, 1994-2001
Pounds Sterling, billions

Area of transgenic crops world-wide, 1996-2001
Millions of hectares, sorted by type of crop

Area of transgenic crops world-wide, 1995-2002
Millions of hectares, sorted by industrial and developing countries

Exhibit 6

THE UNITED STATES CURRENTLY LEADS THE WORLD IN TRANSGENIC CROP PRODUCTION
Transgenic Crop Production, by country, 2000

<table>
<thead>
<tr>
<th>Country</th>
<th>Area planted in 2000 (millions of acres)</th>
<th>Crops grown</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>74.8</td>
<td>soybean, corn, cotton, canola</td>
</tr>
<tr>
<td>Argentina</td>
<td>24.7</td>
<td>soybean, corn, cotton</td>
</tr>
<tr>
<td>Canada</td>
<td>7.4</td>
<td>soybean, corn, canola</td>
</tr>
<tr>
<td>China</td>
<td>1.2</td>
<td>cotton</td>
</tr>
<tr>
<td>South Africa</td>
<td>0.5</td>
<td>corn, cotton</td>
</tr>
<tr>
<td>Australia</td>
<td>0.4</td>
<td>cotton</td>
</tr>
<tr>
<td>Mexico</td>
<td>minor</td>
<td>cotton</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>minor</td>
<td>corn</td>
</tr>
<tr>
<td>Romania</td>
<td>minor</td>
<td>soybean, potato</td>
</tr>
<tr>
<td>Spain</td>
<td>minor</td>
<td>corn</td>
</tr>
<tr>
<td>Germany</td>
<td>minor</td>
<td>corn</td>
</tr>
<tr>
<td>France</td>
<td>minor</td>
<td>corn</td>
</tr>
<tr>
<td>Uruguay</td>
<td>minor</td>
<td>soybean</td>
</tr>
</tbody>
</table>

THE GENETIC MODIFICATIONS CAN—UNSURPRISINGLY—HAVE DRAMATIC EFFECTS
Photographs of corn and soybean varieties with genetic modifications (genetically modified species on left; wild-type on right)

Corn

Soybeans

Exhibit 8

THE GENETIC CODE ALLOWS FOR HUGE NUMBERS OF NUCLEOTIDE SUBSTITUTIONS WHICH DO NOT RESULT IN NECESSARY AMINO ACID (AND RESULTING PROTEIN) MODIFICATIONS

Amino acids (short forms) coded by different combinations of nucleotides (i.e., T, C, A, and G)

<table>
<thead>
<tr>
<th>T</th>
<th>C</th>
<th>A</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTC Phe [F]</td>
<td>TCC Ser [S]</td>
<td>TAC Tyr [Y]</td>
<td>TGC Cys [C]</td>
</tr>
<tr>
<td>TTA Leu [L]</td>
<td>TCA Ser [S]</td>
<td>TAA Tyr [end]</td>
<td>TGA Ter [end]</td>
</tr>
<tr>
<td>CTT Leu [L]</td>
<td>CCT Pro [P]</td>
<td>CAT His [H]</td>
<td>CGT Arg [R]</td>
</tr>
<tr>
<td>CTC Leu [L]</td>
<td>CCC Pro [P]</td>
<td>CAC His [H]</td>
<td>CCC Arg [R]</td>
</tr>
<tr>
<td>ATT Ile [I]</td>
<td>ACT Thr [T]</td>
<td>AAT Asn [N]</td>
<td>AGT Ser [S]</td>
</tr>
<tr>
<td>ATC Ile [I]</td>
<td>ACC Thr [T]</td>
<td>AAC Asn [N]</td>
<td>AGC Ser [S]</td>
</tr>
<tr>
<td>ATA Ile [I]</td>
<td>ACA Thr [T]</td>
<td>AAA Lys [K]</td>
<td>AGA Arg [R]</td>
</tr>
</tbody>
</table>

Source: STRYER ET AL., BIOCHEMISTRY (5th ed. 2002); research by C. Scott López.
ONE METHOD OF ADDRESSING PROBLEMS WITH THE DOCTRINE OF EQUIVALENTS IS BY USING A "PYRAMID" APPROACH TO ASSESS POSSIBLE PATENT INFRINGEMENTS

Graphic representation of the 'pyramid' approach applied to genetically modified crops

Key ideas:
(1) The Doctrine of Equivalents will be applied by searching for insubstantial changes at each level of creation required to develop a GMO.
(2) At each level there are less possible ways to achieve the desired result; thus, the range of equivalents will depend on how much latitude exists to allow competitors to design around the patent.

StarLink™ CORN, CONTAINING THE GENE Cry9c, WAS AT THE CENTRE OF A MAJOR PUBLIC RELATIONS FIASCO

Modification Method

CBH-351 maize was produced by biotic transformation of the backcrossed hybrid maize line (PA91 x H99) x H99 with two pUC19 based plasmids, PRSV/99 and pDE10. Both plasmids contained the modified cry9c gene and the bar gene, respectively, engineered for enhanced expression in plants. The cry9C and bar genes were fused to noncoding regulatory sequences that enabled them to be expressed at high levels, constitutively throughout most of the plant. Specifically, the expression of the modified cry9c gene was regulated by the promoter and terminator sequences from the 3SS transcript of CaMV, along with the leader sequence of the cab22L gene from petunia. The expression of the bar gene was also directed by the 3SS CaMV promoter along with the 3' untranslated region from the nopaline synthase (nos) gene from A. tumefaciens which is involved in transcription termination and polyadenylation. Although most of these regulatory regions were derived from plant pathogens, the regulatory sequences cannot cause plant disease by themselves or with the genes that they are designed to regulate. Additional genetic elements present on the transforming plasmids included the ampicillin resistance gene beta-lactamase (bla) and the origin of replication (ori) both from the enteric bacterium, Escherichia coli. Both were introduced into CBH-351 maize, however these elements are nonfunctional in plants. The bla gene was present on the plasmids only as a selectable marker to detect transformed E. coli host bacteria.

Summary of Introduced Genetic Elements

<table>
<thead>
<tr>
<th>Code Name</th>
<th>Type Promoter, other</th>
<th>Terminator</th>
<th>Copies Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>bar</td>
<td>phosphinothricin hygromycin (T. hygroscopicus)</td>
<td>CaMV 35S A. tumefaciens nopaline synthase (nos)'3' polyadenylation signal</td>
<td>>44</td>
</tr>
<tr>
<td>cry9c</td>
<td>cry9c delta-endotoxin (Bacillus thuringiensis subsp. kurstaki)</td>
<td>CaMV 35S Cry9c (A) signal</td>
<td>>1</td>
</tr>
<tr>
<td>Ab beta-lactamase</td>
<td>SN</td>
<td>Not expressed in plant tissues</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of Zea mays L. (Maize)

- **Center of Origin**: Mesoamerican region, new Mexico and Central America
- **Reproduction**: Transformed via conventional procedures.
- **Toxins**: No endogenous toxic or significant levels of antinutritional factors.
- **Allergenicity**: Although some components of the allergenicity profile have been identified, there is no evidence of acute toxicity in laboratory mammals, birds, or non-target beneficial insects has been reported. The Cry9C protein is resistant to heat and proteolytic degradation and may have allergenic potential.

research by C. Scott López.
Exhibit 11

WET-MILLING CORN IS THE MOST POPULAR MEANS OF PROCESSING CORN WORLDWIDE

<table>
<thead>
<tr>
<th>Type of corn used worldwide, by milling process</th>
<th>Protein content & uses of wet milled corn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent</td>
<td></td>
</tr>
<tr>
<td>Wet milled</td>
<td>Fraction</td>
</tr>
<tr>
<td>76.7%</td>
<td>Approximate Percent Protein Content¹</td>
</tr>
<tr>
<td>Dry-milled alcohol</td>
<td>45-65% Protein</td>
</tr>
<tr>
<td>12.4%</td>
<td>Animal Feed</td>
</tr>
<tr>
<td>Dry-milled and alkaline</td>
<td>Core/Grain</td>
</tr>
<tr>
<td>10.9%</td>
<td>39% Protein</td>
</tr>
<tr>
<td></td>
<td>Animal Feed</td>
</tr>
</tbody>
</table>

Wet milling process

WET MILLING CORN IS ONE WAY TO REDUCE THE AMOUNT OF Cry9c PROTEIN—THEREBY ELIMINATING FEARS OF ALLERGIC REACTIONS FROM HUMAN CONSUMPTION

Estimated upper bound exposure to Cry9c protein for various population groups assuming food containing corn starch was made from grain containing 1.2% StarLink™ corn

Percentiles in percent; other figures in micrograms

<table>
<thead>
<tr>
<th>Group</th>
<th>Potential Daily Exposure of Cry9C Protein from Corn Starch</th>
<th>Upper Bound Exposure for 1999 (1.2%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentile:</td>
<td>95</td>
<td>99</td>
</tr>
<tr>
<td>US Population</td>
<td>0.00387 ug</td>
<td>0.01103 ug</td>
</tr>
<tr>
<td>Infants</td>
<td>0.00135 ug</td>
<td>0.00213 ug</td>
</tr>
<tr>
<td>Children 1 to 6 yrs</td>
<td>0.00116 ug</td>
<td>0.00290 ug</td>
</tr>
<tr>
<td>Children 7 to 12 yrs</td>
<td>0.00174 ug</td>
<td>0.00484 ug</td>
</tr>
</tbody>
</table>

Estimated upper bound exposure to Cry9c protein for various population groups assuming food containing corn starch was made from grain tested by GIPSA guidelines and containing 0.125% or less StarLink™ corn

Percentiles in percent; other figures in micrograms

<table>
<thead>
<tr>
<th>Group</th>
<th>Potential Daily Exposure of Cry9C Protein from Corn Starch</th>
<th>Upper Bound Exposure (0.125%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentile:</td>
<td>95</td>
<td>99</td>
</tr>
<tr>
<td>US Population</td>
<td>0.0003249 ug</td>
<td>0.0009261 ug</td>
</tr>
<tr>
<td>Infants</td>
<td>0.0001137 ug</td>
<td>0.0001785 ug</td>
</tr>
<tr>
<td>Children 1 to 6 yrs</td>
<td>0.0000975 ug</td>
<td>0.0002436 ug</td>
</tr>
<tr>
<td>Children 7 to 12 yrs</td>
<td>0.0001461 ug</td>
<td>0.0004062 ug</td>
</tr>
</tbody>
</table>

POSSIBLY PATENTABLE ITEMS CAN BE CLASSIFIED IN ONE OF 3 KEY WAYS

Universe: Universe of ideas in biotechnology.

Norm 1: That which cannot be owned is not patentable.
Norm 2: That which can be owned may nevertheless not be patentable.
 (a) Specific exclusion.
 (b) Exclusion through patentability criteria.
Norm 3: That which is patentable may nevertheless not be patented on public policy grounds.

MONSANTO HAD EXPANDED ITS BIOLOGICAL RESEARCH INTERESTS IN MANY AREAS BY THE MID-90s

Exhibit 15

MOST COUNTRIES SOON JOINING THE EU DO NOT WANT GM PRODUCTS DISTRIBUTED
EC Eurobarometer Survey of countries due to join the EU in 2004 re:
attitudes towards GM food

"I do not want this type of food."
EU candidate countries, %, November 2002

<table>
<thead>
<tr>
<th>Country</th>
<th>DISAGREE</th>
<th>0</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latvia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyprus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romania*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithuania</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovakia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Czech Rep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulgaria*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>