MULTIPLE BROADBAND WIRES TO THE HOME: FUTURE OR FOLLY?

Andrew C. Barrett*

Communication technology is dynamic. It is constantly changing and improving in a myriad of ways. Advanced technology permits new and innovative uses of transmission media and, today, allows a single medium to provide several services simultaneously. Many revolutionary technical advancements have occurred recently. For instance, digital compression, at a reasonable cost, may be applied in several markets — telephone, video, and data. As applied to the communications market sector, economic efficiency means generally that facilities can be used during peak periods at reasonable costs and offered to consumers at fair prices. While communication technology may improve from a technical, economic, or public policy standpoint, advancement has not and will not, by itself, guarantee that the services will be embraced by consumers and thus be commercially successful.

Narrowband and broadband communications enable end users to receive numerous and varied communication services. Broadband communication involves the simultaneous provision of multiple services, such as voice, video, and data, over a single transmission path that has sufficient bandwidth or capacity to provide the services at the same time. While coaxial cable is a broadband medium, narrowband communication, because of less bandwidth, provides only one service, typically telephone service.

Today, economic, technical, industry, and regulatory drivers have spawned the concept of "convergence." The notion is not new. Although there is no

* B.A., M.A., Loyola University of Chicago; J.D., DePaul University College of Law. The author is now the Managing Director of the global telemedia group at Edelman Public Relations Worldwide. The author served on the Federal Communications Commission ("FCC" or "Commission") from September 8, 1989 until March 31, 1996. Prior to his appointment to the FCC, the author served as the assistant director of the Illinois Department of Commerce. He also served as a commissioner on the Illinois Commerce Commission and president of the Mid-America Regulatory Conference. The author wishes to express his gratitude to Todd F. Silbergeld, Esq., his legal advisor for telecommunication and common carrier policy at the FCC, and for the invaluable contributions made to this article. The author also thanks his senior legal advisor at the FCC, Lisa B. Smith, Esq., for her thorough review and diligent management of this article. The views expressed are solely those of the author.

2 For example, voice, video and data could be transmitted over the same network. Second Annual Report, supra note 1, para. 173.

3 See, e.g., In re Advanced Television Systems and Their Impact Upon the Existing Broadcast Service, 10 FCC Rcd. 10540, para. 50 (1995).

5 See supra notes 1, 3 and accompanying text.

7 See, e.g., FCC Cable Wiring and Equipment Rules Attacked by Cable, Backed by Telcos, COMM. DAILY, Mar. 20, 1996; Robert M. Frieden, Satellites in the Global Information Infrastructure: Opportunities and Handicaps, TELECOMMUNI-

8 See, e.g., Mark Landler et al., Bell-Ringer — How Bell Atlantic and TCI Hooked Up — and What It Means for the
established definition, convergence refers to the ability of a single communication service provider, such as a cable television company, to provide voice telephony, video, and data (e.g., facsimile) services simultaneously over a single wire. For complex reasons, regulation of communication services generally has not kept pace with recent, profound technological advances. Congress, however, recently passed landmark communications reform legislation, which now must be implemented by the FCC. In addition, a number of states have enacted measures to foster competition by the elimination of monopolies and barriers to entry in the communications industry.

Ironically, notwithstanding the influence of the financial markets, remarkable technological advances, and benefits that will be generated by multiple broadband wires to the home, it is conceivable that most geographic areas, specifically those located outside of highly populated, urban areas, will not be included in some communication service providers' construction plans. Under existing cost structures and any potential for market share, rural and lower population density areas cannot support the huge investments required for broadband deployment and, more specifically, more than one broadband "pipe" to every home. Furthermore, market research has not yet shown that consumers are necessarily embracing advanced communication services. Thus, the goal of multiple broadband wires to every American household may remain for a period of time but, in the long term, the cost of providing such facilities and services can be overcome only through partnerships and alliances. This paper examines some of the reasons for this harsh and unfortunate reality.

BARRIERS TO A MULTIPLE BROADBAND WIRE HOUSEHOLD

Economic Barriers

Presently, the enormous cost and associated economic risk involved in extensive broadband construction is discouraging some major players in the communications industry from constructing, or upgrading existing systems to create, ubiquitous broadband networks. Not only are the basic construction costs substantial but, according to published reports, technology has not advanced to the point where all of the requisite components are either available or are available at a reasonable cost. Moreover, with respect to start-up and construction costs, local exchange telephone carriers ("LECs") may be at a competitive disadvantage vis-a-vis cable television operators. Many cable operators, in contrast to local telephone companies, already have a broadband infrastructure in place. While cable operators boast extensive broadband facilities that pass

See, e.g., James Coates, Untangling the Web Woven into the Internet is a Colorful Tool that is Hastening the Day when Everyone is On-line, CHIC. TRIB., Apr. 3, 1995, at C1.

For example, the FCC has endeavored to keep up with the ever-expanding wireless telecommunications sector and its technologies obviously unforeseen to the drafters of the Telecommunications Act of 1934. Mary Lu Carnevale, FCC Acts to Keep Pace with Changes Reshaping the Communications Sector, WALL ST. J., Feb. 4, 1994, at B2.

See, e.g., CAL. PUB. UTIL. § 709 (1994); FLA. STAT. § 364.01 (1995); TEX. REV. CIV. STAT. ANN. art. 1446c-0, § 3.001 (West 1995); WIS. STAT. § 196.195 (1994).

In discussing the possibility of two or more wires competing for customers, Amos "Bud" Hostetter, Chairman and Chief Executive Officer of Continental Cablevision, noted that I believe there will be certain areas where this simply

won't work. Clearly, it will work in New York and Boston, Los Angeles and Chicago, but I think the jury is still out on how it will work in smaller and middle-size cities-Richmond, Va., or Findlay, Ohio-communities in which we're involved. And I'm confident it won't work in Keokuk and Upper Sandusky, Ohio.

Don West, The Once and Future Cable, BROADCASTING & CABLE, May 8, 1995, at 32, 34.

See infra notes 34-38 and accompanying text; but see George Taninecz, U.S. Wireless Gets Off Work, INDUSTRY WK., Oct. 2, 1995, at 47.

See generally Brown & Cervenka, supra note 17.

Joe Flint, Programming Interest for Telcos Under Fire, BROADCASTING & CABLE, Oct. 19, 1992, at 40 (discussing such arguments made by the LECs in the FCC's video dialtone proceedings).

Although often overlooked, coaxial cable is a broadband
virtually every home in their franchise areas, they lack the essential switching facilities, the technical expertise, and the network reliability capabilities necessary to provide telephone service. Meanwhile, LECs have invested millions of dollars to build a state-of-the-art narrowband plant for voice service. Generally speaking, these narrowband facilities are not optimal for, and in some cases cannot provide, advanced services, such as live television programming, switched video/video-on-demand, or on-line services.

Innovation in the form of technological advancement is not always driven by cost to the end user. It appears that most companies tend to initially focus upon perfecting technology and verification of performance. Cost considerations become a factor when company management ascertains the commercial viability of a product or service and begins to formulate a business plan. With respect to integrated broadband networks, communication services providers are currently considering several different technologies and architectures to provide numerous services. While service providers consider delivery system options, one fact is ever present — the cost per home passed is prohibitively high for most network architectures. Currently, these costs have been estimated to range from $650 to $17,000 per home passed.

Though the network construction costs are staggering, customer premises equipment (“CPE”) for integrated voice and video services is also expensive and thus may, in the near term, impose yet another obstacle to consumer demand. Depending upon technological capabilities and processing power, broadband CPE, such as set-top converter devices used for system security are prohibitively expensive. In most cases, to receive the benefit of a panoply of services, these devices would have to be purchased or leased by the subscriber, adding significant expense for consumers. Yet, it is generally agreed that, in the future, the cost of broadband CPE will decline upon achieving mass production efficiencies.
Market Demand for Advanced Communication Services

"If you build it, they will come." While we are not discussing the construction of baseball fields here as the characters did in the motion picture *Field of Dreams*, one must take account of the level of consumer demand for advanced communication services when considering the high level of investment needed to construct broadband networks. In a nutshell, if communication services providers build extensive broadband networks, will consumers subscribe? Is common carrier video service viable from an economic or commercial standpoint? While some consumers may favor "one-stop-shopping" convenience, one must wonder how long it will take for consumers to embrace the myriad of services providers plan to offer.

Market research is showing lukewarm consumer reaction to integrated, broadband services. While various segments of the population are interested in some interactive services such as video-on-demand, surveys suggest that many remain undecided or simply uninterested in other interactive services. One recent survey indicates that nearly one-half (forty-nine percent) of those asked said they were "not at all interested" in buying their telephone and cable service from a single company. According to this research, there are three reasons for consumer reluctance to accept integrated services: (1) dissatisfaction with cable operators and fears that cable service could adversely affect telephone service; (2) concerns regarding increasing concentration of economic power; and (3) habit and general satisfaction with telephone service. Other research demonstrates that demand for new services may be insufficient to provide a positive return on the substantial investments required to build two competing broadband networks in one market.

In addition to relative satisfaction with existing service providers, other concerns may be dampening consumer interest in these services. Americans have long been concerned with the potential loss of privacy. Thus, privacy and security may make them reluctant to provide personal information, such as credit card information over a broadband network. Communication service providers have touted new home shopping opportunities over these networks, and assert that technology will allow a subscriber to make purchases by "pointing and clicking" on an item with a remote control. Purchasing information, such as a subscriber’s name, address, telephone number, credit card data, and buying habits represent market information that is becoming increasingly valuable as corporations seek to focus advertising and marketing efforts. Other "human" reasons also may be affecting market research results for interactive services. Many consumers enjoy social interaction: visits to shopping malls, the videotape rental store, the supermarket, and the like. Ad-

53 *Field of Dreams* (Universal City Studios, Inc. 1989).
54 Some LECs have been charged with "electronic redlining," where advanced facilities are initially deployed only to middle and upper class neighborhoods, even though market research may indicate that lower income households subscribe in at least as strong proportionate numbers to entertainment services, of 1984, through section 621, has contributed to the availability of cable television. The Cable Communications Policy Act of 1984, through section 621, has contributed to the availability of cable television by making it illegal for cable operators to redline low-income areas. The Cable Communications Policy Act of 1984, Pub. L. No. 98-549, § 621, 98 Stat. 2780, codified at 47 U.S.C. § 541 (1984); see also H.R. Rep. No. 934, 98th Congress, 2d. Session, 59 (1984), reprinted in 1984 U.S.C.C.A.N. 4655, 4696.
56 See, e.g., Mills, supra note 24.
57 D.J. Lynch, Poll: Consumers Cool to Combo of Phone and Cable, USA TODAY, Jan. 3, 1996, at 4B.
61 For example, advanced broadband networks may be capable of providing "tele-medicine" services which broadly refers to remote medical diagnosis. See B. Richards, Doctors Can Diagnose Illnesses Long Distance, To the Dismay of Some, WALL ST. J., Jan. 17, 1996, at A1; see also J. Markoff, Plan to Guard Credit Safety on Internet, N.Y. TIMES, Feb. 1, 1996, at D1 (business group led by Mastercard and Visa has developed an industry standard to protect electronic transactions over the Internet); M. Roberti, Corporate Insecurity, BUS. TRAVELER, Oct. 1995, at 16.
62 Stephen C. Miller, Point, Click, Shop Till You Drop, N.Y. TIMES, Apr. 20, 1995, at C5.
vanced, interactive networks could be seen as potentially reducing or even eliminating this "social" contact.

Current market research for advanced telecommunications services reflects that the majority of the American consuming public is not yet comprised of the "computer generation," that is, the generation of children who grew up with computers and who are very computer-literate. This population segment is more familiar, more adept, and less fearful of advanced technology than its parents. Until these users are prominently represented in market research, we may anticipate that demand will be relatively low.

Market research demonstrating moderate consumer interest will not provide enough incentive for communication services providers to construct competing, multi-million dollar broadband networks. It is unlikely that mid-sized and small markets can support more than two broadband networks, and most markets probably will not support more than one broadband facility. Notably, while service providers have been able to obtain a competing cable franchise in any geographic market since 1984, meaningful facilities-based cable competition has yet to emerge. This may be an indication that market share for broadband services can only be justified by one service provider. Moreover, industry figures indicate that, while cable facilities pass nearly every television household (about ninety-seven percent) in the United States, only sixty-four percent of all television households subscribe to basic cable service.

Interestingly, while current market conditions do not justify capital investment in advanced, broadband infrastructure and facilities, these conditions have not discouraged service providers from entering new product and service markets with more cost effective alternative technologies. For example, several telephone companies are planning to use Multipoint Multichannel Distribution Service ("MMDS") or "wireless cable" to enter the video market, and multiple cable system operators ("MSOs") will use wireless technologies, including newly-acquired personal communication service ("PCS") spectrum, in combination with their existing cable infrastructures, to enter the telephony market. To date, three RBOCs have made substantial investments in wireless cable companies so that they will be able to enter the video market immediately with minimal capital outlay. Telephone companies are also considering direct broadcast satellite service to compete with cable and over-the-air broadcast services. For approximately $135 million, AT&T recently purchased a 2.5 percent equity interest in DirectTV, a DBS operator owned by Hughes Communications, a subsidiary of General Motors. AT&T has an option to acquire up to thirty percent of DirectTV, which may indicate that AT&T will be in the DBS business for some time to come. MCI, with its partner News Corporation (owner of the FOX television network), paid nearly $700 million for a DBS slot at a special FCC auction.

Cable MSOs, on the other hand, have been upgrading their networks to penetrate the closely-guarded local telephone business. While many cable operators have broadband networks that serve nearly every home in a franchise area, these facilities, at least in the near term, are not capable of pro-

44See West, supra note 14, at 34-36; Mercer Management Consulting, supra note 38. "Although many believe that the long-term interests of U.S. subscribers would be best served by fiber-to-the-curb, it is too expensive and time-consuming to deploy on a national basis any time soon." Stewart, supra note 17.
46National Cable Television Association, Cable Television Developments 1 (Fall 1995).
49Brown & Cervenka, supra note 17, at 42, 44, 50. Apparently, these actions, in their best light, indicate that some LECs are "hedging their bets" for the near term with respect to the need to upgrade facilities in order to provide video programming services.
48Id. Additionally, Microsoft Corporation and DirectTV have formed an alliance to allow DirectTV subscribers to receive new interactive digital services over their computers. Doug Abrams, Internet Providers Ease Access with Pacts, WASH. TIMES, Mar. 12, 1996, at B6.
viding technically reliable telephone service. Most
cable systems are one-way, multi-cast (every sub-
scriber receives the same programming simultane-
ously) distribution networks and need at a minimum a
series of interconnected, multi-million dollar tele-
phone switches to provide telephone service. Because
most operators have never been in the tele-
phone business, they may have to acquire the
technical expertise, that is, network design engineers,
software engineers, and technicians, to construct in-
tegrated services networks. Cable MSOs are consid-
ering strategies that incorporate a combination of
wireless and wireline solutions to provide voice ser-
vice. Several MSOs, including Tele-Communica-
tions, Inc. ("TCI"), Comcast, and Cox Enterprises,
have allied with Sprint Communications Corpora-
tion to purchase nationwide PCS licenses and will
eventually integrate PCS facilities with their cable
facilities to provide complete "end-to-end" voice,
data, and cable services.

Technical Barriers

In addition to daunting economic barriers, techni-
cal issues remain in a state of flux, making service
providers uncertain about making substantial invest-
ments in broadband facilities. Outside of laboratory
testing or trial conditions, no service provider is of-
fering integrated voice and video on a commercial
basis over a broadband network by using a single
wire to the home. Indeed, some critics maintain that
the provision of integrated voice, video, and data ser-
ices is a "pipe dream," and that there is a high
probability that most Americans will never reap the
benefits of an advanced broadband infrastructure.

\begin{itemize}
 \item Andrew Kupfer, Can Cable Win Its Phone Bet?, FORTUNE, Sept. 18, 1995, at 175.
 \item Id.
 \item Beriker, supra note 54, at 39.
 \item Washington's Wake-Up Call, supra note 37.
 \item See discussion supra section I.A.
 \item As mentioned above, some telephone companies have re-
recently acquired wireless cable systems. See, e.g., David
Tobenkin, The Wireless System That Could, BROADCASTING &
CABLE, May 1, 1995, at 20. These systems, because of the rela-
tive short construction time, give the telcos the ability to quickly
penetrate the video market. Id.
 \item See, e.g., 42,000 Mile Optical Fiber Backbone, N.H. BUS.
 \item See Michael Burgi, No U Turn, The Electronic Super-
highway is Under Construction, MEDIAWEEK, Apr. 19, 1993, at
26.
 \item Prior to passage of the 1996 Act, video dialtone was envi-
isioned as a common carrier video service to be regulated under
Title II of the Communications Act of 1934, as amended. Tele-
phone Company-Cable Television Cross-Ownership Rules, Sec-
tions 63.54-63.58, Second Report and Order, Recommendation
to Congress, and Second Further Notice of Proposed Rulemak-
ing, 7 FCC Rcd. 5781 (1992) [hereinafter Second Report and
Order]. The Commission intended video dialtone service to com-
pete with cable service. Id. at 5787, para. 9. Section 651 elimi-
nates all rules and regulations regarding video dialtone. Pursu-
ant to the section, common carriers are not required to receive
authorization pursuant to section 214 of the Act to provide cable
service directly to subscribers. Because of legal uncertainty and
regulatory obstacles, however, video dialtone did not fulfill its
intended purpose. The 1996 Act refers instead to "open video
systems." 1996 Act, supra note 11, § 453.
 \item In re Implementation of Section 19 of the Cable Televi-
sion Consumer Protection and Competition Act of 1992, First
 \item Robert Bixby, Totally Wired: Data Communications
Technology in the Past and Future, COMPUTE!, Aug. 1994, at
80; Jon Van, Antec on Same Wavelength as Cable TV, CHIC.
TRIB., Apr. 27, 1992, at C1.
\end{itemize}
nals, which are carried over the optical fiber facilities, are converted back to electrical signals, so that they may be delivered over coaxial cable facilities to the subscriber's premises.66 One disadvantage to predominantly fiber architectures like FTTC, FTTH, and even HFC, is that optical fiber cable cannot carry power.67 Therefore, these networks require an independent cable path or a combined optical fiber-coaxial cable to power neighborhood nodes and optical network units.68 In addition, to ensure reliability, fiber networks used to provide telephony should not depend entirely upon commercial power. Either diesel generators or battery back-up systems must be integrated into system designs.69 Yet another disadvantage for certain network designs involves maintenance of network interface and termination equipment.70 “For some service calls, the service provider may need access inside the home to repair the remote terminal; this creates scheduling problems for the service provider and the subscriber alike.”71

ADSL is not a network architecture, but rather a technology that enables telephone networks, constructed mainly of twisted copper pair, to carry stored, compressed video over existing infrastructure.72 Hardware is installed between the originating point in the network (usually the LEC central office) and the subscriber's premises.73 In contrast to a “multi-cast” HFC network, ADSL is a switched delivery system. Each subscriber establishes an individual connection with the central office and receives a signal sent from the central office that is intended only for the use of that particular subscriber.74 The disadvantage to this technology is that it is not yet capable of providing live, real time video signals.75 In addition, because ADSL does not support integrated services or simultaneous use of the same path for both voice and video services, each ADSL subscriber needs an additional telephone line for telephone service.76

Notwithstanding their disadvantages, LECs have been testing ADSL networks for some time with Commission authorization.77 The earliest technical trials using ADSL were conducted in 1993 by Bell Atlantic in northern Virginia,78 and by NYNEX, which successfully tested a hybrid optical fiber and coaxial cable network (HFC network) in New York City.79 Technical and marketing trials have also been conducted by SNET, US WEST Communications, and the Rochester Telephone Corporation.80 The Commission authorized other trials under the video dialtone model, yet due to technical, economic, and regulatory reasons, these trials were not begun.81

While carriers have conducted video trials, conflicting information exists concerning the commercial availability of necessary electronic components and systems integration software for advanced broadband networks.82 Critics claim that equipment needed to separate voice and video signals from a common delivery path at the customer's premises has not been perfected.83 Others assert that elements of FTTC networks have not yet passed "bench tests."84 Systems integrators, like Lockheed Media Systems and Microsoft, continue to work the "bugs" out of the mammoth software packages that will run LEC networks.85 It is possible, therefore, that LECs may be hedging their bets by investing in and acquiring

66 See, e.g., Craig Hubbard, Laser Improves Fibre Efficiency, CANADIAN ELECTRONICS, July 1991, at 2.
68 See generally Bax et al., supra note 28, at 30. Southern New England Telephone Company ("SNET") is testing a combination optical fiber and copper cable that uses the copper for power transport and the fiber for carrying video signals. Brown & Cervenka, supra note 17, at 46.
69 Tim Stevens, Bellcore, INDUSTRY Wk., Dec. 19, 1994, at 38.
70 Bax et al., supra note 28, at 30.
71 Id.
72 See generally Landler et al., supra note 17.
73 In re Expanded Interconnection with Local Telephone Company Facilities, Memorandum, Opinion and Order, 9 FCC Rcd. 5154, para. 7 (1994).
75 Id. paras. 127, 192.
76 In re Telephone Company - Cable Television Cross-
wireless cable systems.

Legal and Regulatory Barriers

While the FCC has approved several LEC applications to provide video service, many carriers and other service providers have suspended their broadband deployment plans due to continuing regulatory uncertainty. This reluctance to construct facilities has, in part, been caused by an outdated federal statute — the Communications Act of 1934. While the Communications Act has assisted in the development of a semi-competitive communications market, the Act was written and subsequently revised in times where the integrated provision of communications services could not be envisioned. At the time of its adoption, the public switched telephone network consisted entirely of twisted copper pair wiring (a narrowband medium). Coaxial cable did not emerge until the mid-1960s with the advent of cable television.

Indeed, the Communications Act was organized according to the type of service provided and the identity of the service provider. For example, Title II of the Communications Act set forth the general requirements for the provision of interstate telephone service by communications common carriers. The Communications Act, though flexible, in truth, has, until very recently, not been flexible enough. In response to the explosive growth of cable television in the 1970s, Congress amended the Communications Act by enacting the Cable Communications Policy Act of 1984. The 1984 Cable Act established the framework for the provision of cable service. Significantly, the 1984 Cable Act delegated authority and specific responsibilities to state and local franchising authorities, who were believed to be in a better position to evaluate the best interests of a community than the federal government. The 1984 Cable Act's provisions were further modified to impose cable rate regulation and other requirements in 1992.

Notwithstanding major amendments in 1984 and 1992, the Communications Act has been in need of major reform for some time. Its provisions have not kept pace with recent, remarkable technological advances. Nor has it satisfied the needs of strong market forces that are demanding that service providers increase earnings and create new revenue streams. While Congress has attempted to re-write parts of the Communications Act several times, bills to revise its provisions have failed in at least five Congresses. Recently, however, Congress passed landmark communications reform legislation, "The Telecommunications Act of 1996." The 1996 Act now must be implemented, in a short timeframe, by the FCC. If the 1996 Act is not implemented in a timely, complete and effective manner, meaningful competition in important sectors of the economy will be delayed, ultimately denying consumers the benefits of full and fair marketplace competition.

In connection with broadband facilities and services, the 1996 Act seeks to resolve several flaws and anomalies in the Communications Act. It generally updates communications law by attempting to foster market competition and permitting companies to enter new businesses and pursue new sources of revenues. From most of the LECs' perspective, one of the most significant changes is the elimination of
the telephone-cable television cross-ownership restrictions previously found in Section 613 of the Communications Act of 1934. 100 These cable regulations were read by some to apply to the video programming operations of common carriers, even when the carrier constructed and offered common carrier video capacity to unaffiliated programmers on other portions of a video platform.101

As a result of this revision, telephone companies may now provide video services without concern for uncertain judicial, statutory, and regulatory impediments. Implementation of the landmark 1996 Act means that the FCC will undertake to complete as many as eighty proceedings in timeframes ranging from six to twenty-four months.102 For example, the FCC has initiated the proceeding necessary for promulgation of the rules to govern “open video systems,” the regulatory model which “replaces” video dialtone.103 Among other things, these regulations must: ensure that rates for carriage are just and reasonable and not unreasonably discriminatory;104 ensure that the service provider not select the video programming that occupies more than one-third of the activated channel capacity when demand exceeds available capacity;105 satisfy FCC “sports exclusivity” policies, “must-carry” rules, and retransmission consent rules;106 ensure that service providers do not discriminate in favor of affiliates with regard to advertising or marketing;107 ensure compliance with programming copyright and signal identification requests;108 and ensure that unaffiliated programming services are included on electronic menus or navigational devices.109 Furthermore, the FCC must promulgate regulations concerning significant issues such as universal service,110 network interconnection,111 toll-free billing practices,112 BOC provision of pay telephone service,113 and network infrastructure sharing.114

Budget constraints have also been hoisted on the Commission. The FCC is an independent federal agency that currently employs over 1,900 people.115 Its budget for fiscal year 1995 was approximately $185 million.116 Unfortunately, the FCC is currently operating without a budget appropriation for its operations in fiscal year 1996 and operates under a continuing resolution that funds the agency at approximately $177 million.117 This critical budget situation also has the potential to impede the Commission’s effort to implement the Telecommunications Act of 1996 under the time constraints contained in the legislation. While the FCC has implemented legislation before, it has not had to undertake an implementation of this magnitude, affecting so many industry players, under such short deadlines.

CONCLUSION

While advanced broadband facilities are likely to provide consumers with new integrated services and service providers with new revenue streams, several challenging obstacles remain that at least will delay and could scuttle deployment plans. At this time, network construction and broadband CPE costs are prohibitively expensive for many markets. As demonstrated by some studies, consumer demand for advanced communication services is uncertain. In addition, technical obstacles — glitches and “bugs” — remain unresolved. Finally, the FCC must implement the provisions of the new Telecommunications Act of 1996 under severe deadlines and budget constraints.

While many hope that the historic telecommunica-
tions reform legislation will fulfill its intended purposes — eliminate impediments to marketplace competition and create new and numerous business opportunities for service providers — the task is only partially complete. The tremendous implementation of the provisions of the 1996 Act now falls to the FCC, which must accomplish this task in an uncertain budget environment. As the communication industry by 1998 will represent one-sixth of our gross domestic product, it is imperative that the FCC have the resources and facilities to fully implement the 1996 Act. Taken as a whole, all of these factors — technological, market demand, and cost — mean the often-discussed benefits to American consumers may become significantly delayed, or some would argue, never realized.

With high hope for the future, no prediction is ventured.
Abraham Lincoln
